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Abstract—Random walks are used for graph exploration in
a wide range of engineering applications. In recent years, their
mathematical properties have been actively studied. To optimize
random walks, various mobility models have been developed,
such as weighted random walk, non-backtracking random walk,
self-avoiding random walk, and vicinity-avoiding random walk.
Although some of these random walk models can be combined,
it has not yet been adequately clarified how to combine those
random walk models under different environments. The impact
of memory management strategies of random walks with his-
tory on different types of graphs has also not been clarified.
Therefore, this study focuses on (α, k) random walk, with the
transition probability weight parameter α and the self-avoidance
memory size parameter k , to clarify the relationship between
two parameter settings and its efficiency of node search and
graph exploration. Additionally, we investigate how the choice
of memory management strategy (i.e., FIFO (First-In, First-
Out) and LRU (Least Recently Used)) affects the efficiency
of graph exploration. Simulation experiments are conducted
to measure the node search time (average hitting time) and
the graph exploration time (average cover time) when running
different random walks with varying (α, k) parameter settings
and memory management strategies on graphs generated with
seven different network generation models.

Index Terms—Random Walk, Node Search, Graph Exploration

I. INTRODUCTION

Random walks on a graph are used in a wide range of

engineering applications.In recent years, the mathematical

aspects of random walks on graphs have been extensively

studied.To improve the efficiency of random walks, multiple

mobility models have been developed, including weighted ran-

dom walk, non-backtracking random walk [1], self-avoiding

random walk [2], and vicinity-avoiding random walk [3].

Understanding and enhancing random walks on a graph

holds significant importance in the development of high-

quality and reliable protocols, controls, applications, and ser-

vices within communication networks. While conventional

deterministic algorithms may suffice for small-scale and static

communication networks, the landscape changes in large-scale

and dynamic networks. In such scenarios, entities within the

network lack access to global knowledge of the entire network,

limiting their information to localized, partial knowledge.

For instance, in dynamic large-scale networks, algorithms

tailored for static graphs like Breadth-First Search (BFS) and

Depth-First Search (DFS) prove ineffective due to the ever-

changing nature of the network. Consequently, in dynamic

large-scale networks, a specific class of algorithms based on

random walks, which rely solely on the local information

available to an agent (i.e., a random walker), often represents

the sole viable solution.

Random walks on a graph form the basis of numerous

critical technologies aimed at enhancing the Quality of Service

(QoS) and Quality of Experience (QoE) within large-scale,

high-performance communication networks. Applications of

random walks in the network layer of complex large-scale

networks encompass network topology discovery, network

sampling, message routing, message diffusion, network re-

source discovery, node clustering, and network tomography.

Moreover, in the application layer, these random walks

find utilities in various domains, such as large-scale content

networks (e.g., the Web) and social networks [4]. In these

contexts, they are employed for network sampling [5], node

centrality assessment [6, 7], community detection [8, 9], node

classification [10] and node embedding [11]. It is worth noting

that simple random walks on a graph, while straightforward

and tractable, often prove inefficient for practical applications.

Consequently, a range of advanced random-walk-based algo-

rithms, including those incorporating historical data and in-

telligent decision-making, are utilized to achieve significantly

improved efficiency and reliability in these contexts.

In this paper, we investigate the (α, k) random walk, which

incorporates the transition probability weight parameter α and

memory size parameter k.We aim to clarify the relationship be-

tween the settings of these two parameters and the efficiency of

node search and graph exploration as well as the relationship

between memory management strategies and the efficiency of

random walks.

The (α, k) random walk is a discrete random walk on a

graph conducted by a single agent.It is a generalized mobility

model that encompasses weighted random walk and random

walk with history. Weighted random walk is a type of mobility

model in which transition probabilities are weighted, and

random walk with history try to avoid re-visiting previously

visited nodes using their memory. In a connected, unweighted,

and undirected graph, denoted as G = (V,E), the (α, k)
random walk agent avoids nodes visited in the past k steps

and determines its next movement based on the α-th power of

the weights of the degrees of neighboring nodes.

In this paper, we aim to answer the following research

questions.

• How can we combine various random walk movement

algorithms on a graph?
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• In particular, when combining weighted random walk

with random walk that incorporate memory, to what

extent does it improve the efficiency of node search and

graph exploration through random walks?

• When the agent has limited memory space, how can

the utilization of this memory space lead to an efficient

random walk?

We conduct simulation experiments to measure the average

hitting time and the cover time when running different random

walks with varying (α, k) parameter settings and memory

management strategies on graphs generated with seven differ-

ent network generation models. Two essential characteristics

of random walks on a graph are the hitting time and cover

time. The hitting time represents the number of steps it takes

for an agent to arrive at the target node from the starting node.

The cover time is the number of steps it takes for the agent

to visit all nodes at least once.

The main contributions of this work are summarized as

follows.

• We devised an (α, k) random walk that combines

weighted random walk and random walk with history.

• We quantitatively revealed the characteristics of (α, k)
random walk, such as node search time and graph explo-

ration time, under various conditions.

• We revealed that the optimal setting of the weight param-

eter α for the transition probabilities significantly depends

on the size of the agent’s memory space, particularly in

graphs with scale-free properties.

• We proposed a memory management method using LRU

and showed that it can improve the efficiency of random

walk by approximately 6%.

The rest of this paper is organized as follows. In Section II,

we explain random walks on graphs. Section III introduces the

(α, k) random walk used in this paper and explains an example

of its operation. Section IV investigates the relationship among

the two-parameter settings, memory management strategies,

and the efficiency of the (α, k) random walk through a large

number of experiments. Finally, in Section V, we summarize

this paper and discuss future challenges.

II. RANDOM WALK ON A GRAPH

A random walk on a graph is a probabilistic mobility in

which, at each step, the agent randomly selects the next node

to transit. A simple random walk on graphs is simple, making

them local and memoryless; further, they require minimal

processing capabilities at the nodes and rely only on local

information. Owing to their minimal memory requirements,

they are not significantly affected by changes in the environ-

ment, such as dynamic evolving graphs or edge disruptions

in the graph. Consequently, they are particularly useful in

scenarios in which the environment changes frequently, such

as the Internet, peer-to-peer networks (P2P), and wireless ad-

hoc networks. However, simple random walk is often local

and may not fully utilize the global graph structure, and they

have the drawback of not capturing the underlying physical

model.
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Fig. 1. Operation of random walks

In recent years, studies have been conducted to optimize

random walks on graphs, leading to the development of

multiple derivative mobility models such as weighted random

walk, self-avoiding random walk, and vicinity-avoiding ran-

dom walk. Weighted random walk introduces a mechanism

that assigns weights to transition probabilities in simple ran-

dom walks. Self-avoiding random walk has a mechanism for

avoiding revisiting nodes previously visited in simple random

walks as much as possible. Vicinity-avoiding random walk has

a mechanism for avoiding visiting recently visited nodes and

their adjacent nodes in simple random walks.

Fig. 1 illustrates examples of weighted random walks and
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self-avoiding random walks. In weighted random walks, the

weights of transition probabilities are based on the degrees

of adjacent nodes. With smaller weights, the probability of

transitioning increases, making it more likely to transition

to nodes with lower degrees. Self-avoiding random walks

prohibit revisiting previously visited nodes.

III. (α, k) RANDOM WALK

A. (α, k) Random Walk

This section provides an overview of the (α, k) random

walk model under consideration. The (α, k) random walk is

a discrete random walk on a graph conducted by a single

agent; it serves as a generalized mobility model, encompassing

weighted random walk and k-history random walk. Weighted

random walks have a mechanism that assigns weights to

transition probabilities, and k-history random walks record the

nodes visited in the past k steps and prohibits revisiting those

nodes. The (α, k) random walk model allows for the flexible

adjustment of exploration strategies by controlling the parame-

ters α and k. This model enables efficient exploration adapted

to different graph characteristics by leveraging α for weighted

transition probabilities and k for avoiding revisits based on

the history of the past k steps. Consequently, it is expected to

improve exploration efficiency in various topologies, such as

large scale-free and random graphs.

In a connected, unweighted, undirected graph denoted as

G = (V,E), the (α, k) random walk agent avoids nodes

visited in the past k steps and determines the next node to

transition to based on the probability weighted by the α power

of the degrees of adjacent nodes. The transition probability

P (u → v) in the (α, k) random walk is defined by the

following equation.

P (u → v) =

{

1/deg(v)α∑
w∈N(u)\M 1/deg(w)α if v ∈ N(u) and v /∈ M,

0 if v /∈ N(u) or v ∈ M,

(1)

Here, the symbols are defined as follows.

• P (u → v): The transition probability from node u to

node v.

• deg(v): The degree of node v (the number of neighboring

nodes of v).

• α: The weighting parameter for the transition probability.

• N(u): The set of neighboring nodes of node u.

• M : The set of nodes visited within the past k steps (the

agent’s memory).

For example, when α = 0 and k = 1, the (0, 1) random

walk behaves like non-backtracking random walk where the

agent moves to one of the neighboring nodes with equal

probability while avoiding the node visited in the previous

step. On the other hand, when α = 1 and k = 0, the (1, 0)
random walk behaves like weighted random walks where

the transition probability is determined based on the weights

assigned to the degrees of the neighboring nodes. Furthermore,

when α = 1 and k = 1, the (1, 1) random walk avoids the node

visited in the previous step while transitioning to a neighboring

node with a probability determined by the weights assigned

to the degrees of the nodes.

Fig. 1 (c) illustrates the operation of (1, 1) random walk

when the agent is currently positioned at node 4. In this case,

the set of neighboring nodes for node 4 is N(4) = {2, 5, 6, 1}.

Since k = 1, the agent refers to its memory, which contains

the node visited in the previous step, M = {1} .Consequently,

the actual transition candidates are determined as N(4)\M =
{2, 5, 6}, excluding node 1 from the possible transitions.

Furthermore, when α = 1, the transition probability P (u → v)
to a candidate node is calculated using Eq. (1). This transition

probability is calculated based on the degrees of the candidate

nodes, with nodes of lower degrees being assigned higher

probabilities.

The degrees of nodes 2, 5, and 6 are as follows.

deg(2) = 4 deg(5) = 4 deg(6) = 3

Using these values, the transition probability to node 2 is

calculated as follows.

P (4 → 2) =
1/deg(2)α

∑

w∈N(4)\M 1/deg(w)α

=
1/4

1/4 + 1/4 + 1/3
=

3

10

Similarly, the transition probabilities to nodes 5 and 6 are

calculated as follows.

P (4 → 5) =
3

10
P (4 → 6) =

2

5

From this, it can be seen that node 6 is selected with the high-

est probability compared to the other nodes. On the other hand,

nodes 2 and 5 are selected with the same probability. Thus,

the (α, k) random walk achieves flexible graph exploration by

combining degree-based weighting with memory-based self-

avoidance.

B. Memory storage management strategies

Memory storage is an area in the agent where visited node

data can be stored. When the size of the memory storage is 1,

the agent can store the ID of one visited node. Memory storage

management strategies are potential factors that significantly

influence the exploration behavior of agents in (α, k) random

walks. How visit histories are managed is expected to affect

not only the prevention of revisits but also the efficiency of

reaching unexplored areas. However, the impact of memory

storage management on exploration efficiency remains largely

unexplored.Thus, investigating appropriate management strate-

gies is an important task that may contribute to improving

exploration efficiency. For instance, appropriately utilizing

memory storage may reduce unnecessary revisits and allow

agents to efficiently reach unvisited nodes. To evaluate these

potential effects, this study compares different memory man-

agement strategies, such as FIFO and LRU, and examines their

effectiveness.

This study focuses on two methods: FIFO and LRU. In

the FIFO method, the node IDs stored in memory storage are
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Fig. 2. Operation of FIFO and LIFO
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(e) DB (Degree-Bounded) (f) BA (Barabási-Albert) (g) Li-Maini

Fig. 3. Examples of 7 types of graphs (number of nodes: 200)

managed in the order they were added, with the oldest entries

being removed first when memory is full. In contrast, the LRU

method removes the node IDs that have not been accessed for

the longest period, ensuring that the most recently accessed

nodes remain in memory.

Fig. 2 shows an example of memory storage for a size of

3 by the FIFO and LRU methods. In the FIFO method, if the

ID of the newly visited node is already present in memory

(which happens when the agent has stored the IDs of all

neighboring nodes of the current node), the ID stored the

longest is removed, and the order of IDs is preserved. By

contrast, the LRU method removes the ID of the node that has

not been accessed for the longest time, ensuring that recently

accessed nodes remain in memory.

IV. EXPERIMENTS

A. Experimental design

To investigate the relationship between the weight parameter

α and memory storage size k used for self-avoidance in (α, k)
random walks and their impact on the efficiency of graph

exploration, we analyze the characteristics (hitting time and

cover time) of (α, k) random walks by varying the values of

α and k in graphs generated by multiple network generation

models. Furthermore, we focus on (α, 3) random walks when

the memory storage size is set to 3. To understand the effect

of two memory management methods, FIFO and LRU, on the

graph exploration efficiency, we analyze the characteristics of

(α, 3) random walks by changing the memory management

method in graphs generated by multiple network generation

models.

As network generation models, we used three simple graphs

(tree, Voronoi, and random regular graph), two random graphs

(ER (Erdõs-Rényi [12]) and DB (Degree-Bounded [13]), and

two scale-free network generation models (BA (Barabási-

Albert [14]) and Li-Maini [15]). Fig. 3 shows examples

of the seven types of networks with 200 nodes. The tree

graph has a structure where no cycles exist, and all nodes

are connected in a linear or hierarchical manner, typically

branching out from a single root. The Voronoi graph is a

structure where the plane is divided into cells based on a set of

specified points, with each cell forming the nearest region to its

corresponding center point. A random regular graph is a graph

in which all nodes have the same degree, with edges randomly

distributed while maintaining a specific degree distribution.

The ER (Erdõs-Rényi) model generates a structure where

edges between nodes are randomly placed with a specified

probability, producing a disordered and unpredictable graph.

The DB (Degree-Bounded) model generates a random graph in
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(c) average hitting time (k = 1)
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Fig. 4. Relationship between network topology and characteristics of (α, k) random walk (network size: 50)

which the degree of each node is constrained within a specified

range. The BA (Barabási-Albert) model generates a scale-

free network by preferentially attaching new nodes to existing

high-degree nodes. The Li-Maini model evolves dynamically,

where nodes form links across multiple communities, creating

a network with community structures.

In the generated graphs, we measured the number of steps it

took for an agent to arrive at a randomly selected destination

node, excluding the starting node (i.e., hitting time). Similarly,

we measured the number of steps it took for the agent to

visit all nodes except the starting node (i.e., cover time). By

conducting 100 trials of random walks starting from the same

node in a graph, we calculated the average hitting time and

cover time.

B. Performance evaluation of (α, k) random walk

The hitting time and cover time of the (α, k) random walk

when varying the transition probability weight parameter α are

shown in Fig. 4. The hitting time and cover time of the (α, k)
random walk when changing the memory storage management

method are presented in Fig. 5.

These results indicate that the optimal transition probability

weight parameter α, varies based on the size of the memory

space the agent possesses when the graph topology exhibits

scale-free properties. The interaction between α and k was

found to have a significant impact on the agent’s exploration

strategy. Particularly in scale-free networks, where the degree

distribution is highly skewed, an appropriate combination of

α and k is suggested to enhance the efficiency of the agent’s

exploration.

Furthermore, managing the agent’s limited memory space

with LRU instead of FIFO was found to enhance the efficiency

of random walks. This effect was particularly pronounced in

the case of a graph topology resembling a tree. The LRU mem-

ory management strategy is considered particularly efficient

because it prioritizes avoiding nodes that were recently visited,

thereby facilitating transitions based on new information dur-

ing exploration. This approach allows past visitation data to be

quickly incorporated into new exploration strategies, enabling

efficient graph traversal. This effect is especially pronounced

in tree graph topologies.

V. CONCLUSION

We conducted random walks with different (α, k) parameter

settings on graphs with diverse topological structures and

measured the hitting time and cover time. We also measured
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(c) average hitting time (α = 0, k = 3)
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(d) cover time (α = 0, k = 3)

 0

 50

 100

 150

 200

 250

tre
e

re
g
u
la

r

V
o
ro

n
o
i

E
R

D
B

B
A

L
i-M

a
in

i

m
e
a
n
 a

v
e
ra

g
e
 h

it
ti
n
g
 t
im

e
 [
s
lo

t]

FIFO
LRU

(e) average hitting time (α = 1, k = 3)
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Fig. 5. Relationship between network topology and characteristics of (α, k) random walk with different memory storage management methods (network size:
50)

these times when running (α, k) random walks with different

memory storage management methods (i.e., FIFO and LRU).

This study demonstrates that, to enhance random walk

efficiency, it is not just important to optimize individual

parameters, but also to understand and leverage the interactions

between these parameters. By adopting this perspective, we lay

the groundwork for creating universal exploration algorithms

that can adapt to a wide range of network structures.

Future challenges include exploring appropriate (α, k) set-

tings depending on the graph structure, investigating suitable

memory storage management methods according to the graph

structure, and proposing applications utilizing (α, k) random

walks.
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