
Load Balancing to Optimize MPEG-DASH Video
Streaming

Edenilson Jônatas dos Passos
Graduate Program in Apllied Computing (PPGCAP)

Department of Computer Science (DCC)
Santa Catarina State University (UDESC)

Joinville, Brazil
edenilson.passos@yahoo.com

Adriano Fiorese
Graduate Program in Apllied Computing (PPGCAP)

Department of Computer Science (DCC)
Santa Catarina State University (UDESC)

Joinville, Brazil
adriano.fiorese@udesc.br

Abstract—Recent advancements in on-demand multimedia
streaming have revealed the potential of this business model,
driven by the convenience of accessing content anytime and
anywhere. However, delivering a seamless user experience re-
mains challenging due to the demanding nature of audiovisual
streams, despite significant resource allocation. A promising
solution involves using load balancers to distribute workloads
evenly among processing units. This study proposes optimizing
the processing and transmission resources by means of Software-
Defined Networks (SDN). By continuously monitoring perfor-
mance metrics like CPU usage and throughput, the SDN network
controller determines the best server for handling new connec-
tions, even allowing seamless server migration during playback.
The results show up to 80% faster response times and more
consistent video quality, with reduced latency and uninterrupted
playback. The approach also confirms the feasibility of SDN in
streaming services, providing a foundation for future network
improvements.

Index Terms—Load balancing, SDN, Monitoring, Video-
streaming

I. INTRODUCTION

The cloud computing and subscription-based video stream-
ing markets have been consistently growing in recent years.
With the advent of the COVID-19 pandemic, this growing
have become even more significant. According to Global
Industry Analysts [1], cloud computing services generated
approximately $313.1 billion in revenue in 2020, and it is
estimated that by 2027 this figure could reach around $947
billion.

Similarly, the video streaming services sector has experi-
enced growth patterns comparable to those of cloud computing
services. According to [2], this market segment achieved ap-
proximately $100 billion in revenue in 2020 and it is expected
to surpass $200 billion by 2026. Additionally, according to [3],
video-related content accounted for 65.93% of the total traffic
volume on the Internet.

Given such growth, the space for new technologies and
approaches to data transmission network infrastructure is
promising, as service providers struggle to cope with increas-
ing demand while maintaining adequate service quality. In
this context, methods to mitigate this issue exist. One such
method is load balancing. According to [4], the optimal choice

of provider (i.e., computer, server, or service) made by the
load balancer can benefit the system as a whole in various
aspects, such as reducing the risk of failure and overload,
improving scalability, reducing response times overall, and
thereby enhancing customer satisfaction and significantly re-
ducing system maintenance costs.

Load balancing can be addressed by means of various
approaches. Performance metrics-based is one of which. Gen-
erally, when a request is made, the load balancing model
selects the server best suited to attend the demand at that
moment. This server selection process can be based on one
or more predefined metrics or the overall network behavior.

In this work, an approach is presented for the equitable
distribution of processing load by redirecting video content
request and response traffic, focusing on monitoring and
subsequently recovering the constituent metrics of the load
balancing indicator through the adoption of the Software-
Defined Networking (SDN) paradigm. This enables a metric-
based load balancing method that operates directly at the
session layer of the network infrastructure. Instead of relying
on a specific server for load balancing, the equitable allocation
of customer service load is performed by the packet-switching
devices themselves, compatible with the OpenFlow (SDN)
architecture, located in the network segment where the several
servers organized in clusters are located. To this end, client
request traffic is redirected to content servers that align with
the load balancing policy.

This paper is organized as follows. Section II, discusses
related works. Next, Section III details the proposed solution
approach. Section IV presents the evaluation of the proposal,
and Section V provides the final considerations of this work.

II. RELATED WORK

The work by [5] suggests a centralized control architecture,
called Named Data Networking (NDN), which uses edge
nodes to enhance Quality of Experience (QoE) and save
bandwidth through caching and distributed processing for
video-streaming applications. Similarly, [6] presents an op-
timization framework based on Dynamic Adaptive Streaming
(DASH) to maximize the number of simultaneous sessions

623979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

and streaming quality, utilizing SDN for dynamic routing
and bandwidth allocation. Another study by [7] proposes
the Content Steering technique to optimize video delivery,
enabling dynamic routes between different Content Delivery
Networks (CDNs) through a Media Presentation Description
(MPD) file, a key component of DASH. The research by
[8] introduces the Load Balancing Routing Protocol (LBRP),
which adapts routing to improve user experience in video
streaming by prioritizing livestream traffic. Meanwhile, [9]
develops an artificial intelligence-based algorithm to optimize
path selection in SDN networks, minimizing decision time
and reducing resource usage on congested paths. The proposal
by [10] combines Information Centric Networking (ICN) and
SDN in a hybrid architecture to create a transparent caching
system, improving Video on Demand (VoD) performance in
traditional Internet Protocol (IP) networks. Additionally, [11]
presents a method for predicting resources in SDN switches
by applying machine learning algorithms in a video transmis-
sion scenario, while [12] proposes the Extended SDN Cache
(ESC), an architecture that disaggregates caching functions to
reduce the load on SDN controllers and increase the system’s
capacity and flexibility. Most previous studies have primarily
focused on traffic balancing without adequately addressing
load balancing, particularly in the context of video content
distribution. Although a significant number of works utilize
SDN for load balancing, few specifically focus on video
distribution. The central innovation of this work lies in the
ability of the proposed approach to manage high-volume and
long-duration connections in a highly adaptive manner. This
is achieved through the ability to manipulate connections in
real-time, even during multimedia playback, allowing for load
balancing optimization without disrupting the user experience.

III. PROPOSED SOLUTION

To address the challenge of workload overload on multime-
dia content servers, this strategy employs continuous resource
monitoring. The goal is to redirect traffic to the most suitable
server for new connections without disrupting ongoing content
playback. Although traffic redirection during playback can
introduce issues like errors and delays, this research presents
a seamless approach that operates unnoticed by users. This
distinct feature highlights the contribution of this work, offer-
ing a more refined solution than those typically found in the
literature.

Central to this approach is dynamic load balancing, driven
by real-time server performance data. By efficiently redirecting
traffic, the system optimizes resources and minimizes any
impact on service quality. Moreover, Software-Defined Net-
working (SDN) plays a pivotal role, providing flexibility and
control over network traffic. The integration of SDN facilitates
real-time adjustments based on server conditions, ensuring a
responsive system. Key metrics such as throughput, CPU and
memory usage, and storage utilization are closely monitored
due to their direct influence on video streaming performance.
By continuously tracking these metrics and responding swiftly

to any signs of overload, the system enhances performance,
resilience, and service stability.

The Transmission Control Protocol (TCP) Handoff tech-
nique is already well-known in the field of communication
networks, as it plays a crucial role in the efficient man-
agement of connections in distributed and highly dynamic
environments. However, when applied to legacy infrastructure,
its implementation proves to be highly complex, requiring
specific hardware resources and technologies that are generally
not part of the already established network infrastructure.
Nevertheless, with the rise of Software-Defined Networking
(SDN), this technique can be implemented in a less complex
and even more efficient manner.

To migrate an active TCP session from a client, the con-
troller executes the procedure of deleting the two correspond-
ing flows, blocking communication between the old server and
the client. As a result of this deletion, the next packet sent
by the client is redirected to the SDN controller. New flows
are then established between the client and the new server
by the controller. It’s important to note that the new server
will not recognize the client’s session, leading it to send a
Reset (RST) packet in response, forcing the client to restart the
TCP session through a Synchronize (SYN) packet, to which
the new server responds with a SYN+ACK packet. From this
point on, the client is able to request the necessary video
segments from the new server. Next, the controller can forge
two new packets based on the sequence and acknowledgment
information extracted from the client’s packet. These packets
simulate the client’s intention to close the session: FIN and
ACK. The first informs the old server of the client’s intention
to end the session, and the server responds with a FIN+ACK
packet. The controller can generate these two packets even
without the old source’s response, sending the first packet
and waiting for a short interval of two milliseconds before
sending the subsequent ACK packet, thereby appropriately
closing the old TCP session. This process demonstrates the
controller’s ability to manage and orchestrate the transition of
TCP sessions with precision and efficiency.

Moreover, by continuously monitoring resource usage on
servers, it is possible to ensure that they are operating within
or close to their capacity limits. The choice of the most
suitable server to handle a connection is based on a simple
ranking system in which each metric receives a score based
on how detrimental its poor values can be to the final QoE
performance.

In order to develop an effective indicator to identify the most
suitable content server to attend a player’s request, an stress
test on CloudLab platform [13] was performed. This stress
test took into account several MPEG-DASH content server
performance metrics that are intrinsically related to measuring
the client’s QoE, covering various aspects that directly impact
the user’s perception and satisfaction. Therefore, average bi-
trate per second, number of quality changes in the video, time
required to load the video web page, time taken to display
the first video frame in the player and the number of video
stalls. Considering that servers are using CPU, RAM memory,

624

Disk (storage) and network throughput to deliver the video, it
was possible to correlate them with the results of the video
QoE stress test. As a result, it was found that disk access most
influences the performance, followed by throughput and CPU
and RAM usage by last ones even.

Thus, taking into account this found, the initial guidelines
for redirecting connections to select the most appropriate
server is proposed as follows. The server with the highest
throughput is assigned 2 points. The server with the lowest
CPU utilization receives 1 point, while the one with the lowest
RAM utilization is also given 1 point. The server with the
lowest disk utilization is awarded 3 points.

In this sense, define the scoring function Score(s) for a
given server s as follows:

Score(s) =
4∑

i=1

·Metrici(s) (1)

Where:

Metric1(s) =

{
2 if Throughput(s) = max(Throughput)
0 otherwise

Metric2(s) =

{
1 if CPU Usage(s) = min(CPU Usage)
0 otherwise

Metric3(s) =

{
1 if RAM Usage(s) = min(RAM Usage)
0 otherwise

Metric4(s) =

{
3 if Disk Usage(s) = min(Disk Usage)
0 otherwise

The controller plays a central role in the system by contin-
uously monitoring server performance metrics and extracting
critical data that feeds into an efficiency indicator. This is made
possible through the integration of tools like the mod status
module and the Paramiko library, which enable precise, real-
time monitoring. Mod status provides detailed server status
insights, including active processes, resource consumption, and
workload, while Paramiko ensures secure SSH communication
for remote metric collection. The controller not only monitors
server states but also actively interacts with them for mainte-
nance, configuration adjustments, and load redistribution. This
combination allows for automated and responsive manage-
ment, maintaining service quality and operational efficiency
by identifying issues early and taking preventive actions.

A. System Load Balancing Architecture

The proposed architecture for the load balancing system is
hierarchical, consisting of three levels. This approach enhances
the system’s robustness by grouping resources into hierarchical
structures, which facilitates workload management and distri-
bution, even as the system grows and resources spread across
different geographic locations. Figure 1 illustrates the three
proposed hierarchical levels.

The first layer, called the Origin includes the video-content
origin servers. These servers play a critical role in a streaming

service architecture as central repositories that store the entire
media catalog available to users. They are characterized by
significant computational capacity, enabling them to store and
manage a large volume of content such as movies, series, mu-
sic, and other types of media. However, the distinctive feature
of origin servers is their physical location, typically in data
centers or strategic locations. This geographical distance can
be considerable, sometimes spanning entire regions or even
countries. For efficiency and scalability reasons, connections
are redirected to an origin node only when none of the edge
servers have the requested content in their local repository.

Controller nodes are crucial as they receive the initial
user requests and act as the brain of the system. These
nodes house Software-Defined Networking (SDN) controllers,
responsible for determining which servers are most suitable for
handling the user’s connection. When a request is received, the
controller selects the most appropriate server. Once identified,
the controller redirects the connection to that specific server,
ensuring that user connections are optimized and directed to
the most suitable servers, thereby enhancing overall system
performance.

Edge servers, or server nodes, are strategically located
near end-users to optimize performance and communication
latency. However, these edge computing nodes have limited
computational resources compared to origin servers. When a
user makes a request, the controller identifies the most suitable
server by constantly monitoring the server group to find nodes
containing the requested content. After identifying potential
candidates, the controller carefully evaluates them based on
throughput, RAM, CPU, and disk usage to determine the best
node to receive the user’s connection.

IV. EXPERIMENTS AND RESULTS

Scalability tests were designed to evaluate the effectiveness
of the proposed approach in an environment characterized
by increasing connection demand. The methodology involved
simulating a scenario where a progressively larger number of
connections is received by origin servers. The goal was to
determine how well the established infrastructure can handle
the additional load without compromising performance. As
time progresses, the number of connections increases, creating
an overload situation that tests the infrastructure’s limits in
terms of processing capacity, stability, and response time.

Tests were performed using the CloudLab platform [13],
which is deployed over the whole USA country. Three geo-
graphical regions were chosen for the tests: Clemson, Utah,
and Wisconsin depicted on Figure 2. The selection of these ar-
eas was based on their geographic dispersion because it allows
for a more rigorous assessment of the proposed approach’s
performance in a real distributed network environment. The
region of Wisconsin was selected to host the origin server
since it is more centrally located and closer to the other two
regions.

625

Fig. 1. Load Balancing System Architecture

Fig. 2. Distributed Experiment Scenario

The first performed test aims to evaluate the environment
under simpler conditions. In this scenario, every 5 seconds,
a random server in the network receives 100 connections,
with a maximum of 10 simultaneous connections. This initial
configuration serves as a baseline to compare the effectiveness
of different load distribution approaches.

Three different server’s connection distribution approaches

were tested coping with the load balancing system’s scalability.
The dynamic approach adjusts the distribution of connections
based on the current performance of the servers, seeking to
optimize resource utilization adaptively. The random approach
distributes connections without following a specific pattern,
providing insight into the impact of randomness on scalability.
Meanwhile, the Round Robin approach distributes connections
evenly and cyclically among the servers, ensuring that all
receive a similar number of connections over time.

As illustrated in Figure 3, the loading time of the dynamic
approach proved to be considerably faster compared to the
other two approaches. This result highlights the effectiveness
of selecting the least occupied server, which is the main
characteristic of the dynamic approach as proposed by this
load balancing solution.

The ability to dynamically adjust the distribution of con-
nections based on the current state of the servers allowed for
more efficient use of available resources, resulting in faster
response times and better overall system performance.

Figure 4 presents the results of bitrate variation during video
playback in this scenario. Once again, the dynamic approach
proved to be more consistent, providing a higher quality of
experience more quickly compared to the other approaches.
In the dynamic approach, selecting the least occupied server
allowed for more efficient data delivery, resulting in a more
stable and high-quality video experience.

On the other hand, the random approach showed points
of quality loss, highlighting its lack of efficiency in load

626

Fig. 3. Response time - scalability test 100 10

distribution. The random distribution of connections led to
uneven server utilization, resulting in variations in bitrate
and, consequently, a less satisfying video playback experience.
None of the evaluated approaches presented stalls.

Fig. 4. Bitrate variation - scalability test 100 10

In the second scenario, every 5 seconds, a random server in
the network receives 1000 connections, with a maximum of
100 connections being simultaneous. This substantial increase
in load aims to evaluate how each load balancing approach
handles high-demand conditions, testing the limits of the
infrastructure.

Figure 5 illustrates the loading times for all approaches
tested in the 1000-connection scenario. The dynamic approach
again proved to be the most consistent and fastest compared
to the other two approaches.

The faster loading times of the dynamic approach highlight
its effectiveness in adjusting connection allocation based on
the current state of the servers, allowing for better load
distribution and more efficient resource utilization. In contrast,
the random and Round Robin approaches showed greater vari-
ations in loading times, indicating less efficiency in managing
the load under high-demand conditions.

Fig. 5. Response time - scalability test 1000 100

Figure 6 shows that there was no significant variation
in bitrate throughout the video playback for the different
approaches tested. However, a slight advantage of the dynamic
approach is noticeable, as it achieves the best quality more
quickly compared to the other approaches. None of the eval-
uated approaches experienced stalls.

Fig. 6. Bitrate variation - scalability test 1000 100

These results reinforce the superiority of the dynamic ap-
proach in high-performance environments, where speed and
consistency in response time are crucial for maintaining ser-
vice quality and user experience.

The third scalability test aims to saturate the network to
a degree that potentially impacts user experience quality. In
this scenario, every 5 seconds, a random server receives up to
5000 connections, with a maximum of 500 connections being
simultaneous. This test was designed to examine how each
approach handles extreme high-demand conditions, pushing
the infrastructure beyond to its limits.

Figure 7 illustrates the loading times, again showing that
the dynamic approach remains more efficient than the other
approaches. In extreme high-demand scenarios, the dynamic
approach’s ability to adjust connection distribution in real
time results in faster and more consistent response times,

627

highlighting its superiority under extreme load conditions.

Fig. 7. Response time - scalability test 5000 500

As shown in Figure 8, the bitrate variation was more
inconsistent in this test scenario, reflecting the impact of high
network saturation. However, the dynamic approach managed
to maintain maximum quality throughout the test period.
This consistency in bitrate quality highlights the dynamic
approach’s efficiency in managing load and optimizing data
delivery, ensuring a superior user experience even under
extreme stress conditions. None of the evaluated approaches
experienced stalls.

Fig. 8. Bitrate variation - scalability test 5000 500

These results confirm that, during extreme peak conditions,
the dynamic approach is not only more efficient in loading
times but also maintains service quality at high levels, solidi-
fying its effectiveness in high-demand environments.

V. CONCLUSION

This study aims to provide a viable solution, or at least a
significant mitigation, to the challenge of optimizing video
streaming in content delivery networks. In this context, it
proposes the implementation of a video-streaming server’s
load-balancing system based on Software-Defined Network-
ing (SDN) to intercept MPEG-DASH video packets during
video playback. The system analyzes the performance metrics
of available content servers and, based on these analyses,

carefully selects the most appropriate server to handle client
content requests.

The results obtained with this approach are promising. In all
situations where time was the evaluated metric, the approach
proved to be more agile and consistent, as evidenced by
the low standard deviation of the results. Additionally, in
tests focused on observing bitrate fluctuations, there was no-
table consistency in content playback. Once maximum quality
was achieved, it remained stable until the end of the video
playback. Furthermore, even with the dynamic redirection of
connections during streaming, no perceptible changes in video
quality were observed. This stability is crucial for ensuring a
satisfactory user experience, and use in real world scenarios.

In summary, applying SDN for video streaming optimiza-
tion proves to be an effective strategy. Dynamic and intelligent
server selection based on performance metrics can significantly
enhance user experience and network efficiency, making it a
promising alternative for the challenges faced in multimedia
content distribution.

ACKNOWLEDGMENTS

This work received financial support from the Coordination
for the Improvement of Higher Education Personnel - CAPES
- Brazil (PROAP/AUXPE).

REFERENCES

[1] I. Global Industry Analysts, “Cloud computing services - global market
trajectory & analytics,” 2021.

[2] J. Stoll, “Ott video revenue worldwide from 2010 to 2026,” 2021.
[3] Sandvine, “Global internet phenomena,” 2023. [Online]. Available:

https://www.sandvine.com/phenomena
[4] M. Haris and R. Z. Khan, “A systematic review on load balancing tools

and techniques in cloud computing,” in Inventive Systems and Control,
V. Suma, Z. Baig, S. Kolandapalayam Shanmugam, and P. Lorenz, Eds.
Singapore: Springer Nature Singapore, 2022, pp. 503–521.

[5] D. Liu, Z. Wang, and J. Zhang, “Video stream distribution scheme based
on edge computing network and user interest content model,” IEEE
Access, vol. 8, pp. 30 734–30 744, 2020.

[6] R. H. Majdabadi, M. Wang, and L. Rakai, “Soda-stream: Sdn opti-
mization for enhancing qoe in dash streaming,” in NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium, 2022, pp.
1–5.

[7] D.-I. I. W. Group, “Content steering for
dash,” 2022, disponı́vel em https://dashif.org/docs/
DASH-IF-CTS-00XX-Content-Steering-Community-Review.pdf.
Acesso 8 Ago. de 2024.

[8] T. S. Andjamba and G.-A. L. Zodi, “A load balancing protocol for
improved video on demand in sdn-based clouds,” in 2023 17th In-
ternational Conference on Ubiquitous Information Management and
Communication (IMCOM), 2023, pp. 1–6.

[9] M. Taha, “An efficient software defined network controller based routing
adaptation for enhancing qoe of multimedia streaming service,” Multi-
media Tools and Applications, vol. 82, pp. 1–24, 03 2023.

[10] A. M. Bamhdi, “Cdca: Transparent cache architecture to improve
content delivery by internet service providers,” International Journal of
Advanced Computer Science and Applications, vol. 14, no. 10, 2023.
[Online]. Available: http://dx.doi.org/10.14569/IJACSA.2023.0141090

[11] S. M. A. H. Bukhari, M. Afaq, and W.-C. Song, “Streaming via sdn:
Resource forecasting for video streaming in a software-defined network,”
in 2023 Fourteenth International Conference on Ubiquitous and Future
Networks (ICUFN), 2023, pp. 596–601.

[12] W.-K. Chiang and T.-Y. Li, “An extended sdn architecture for video-
on-demand caching,” Mobile Networks and Applications, pp. 1–18, 04
2024.

[13] CloudLab, “The cloudlab manual,” 2023, acesso em: 10 out. 2023.
[Online]. Available: https://docs.cloudlab.us/

628

