
Optimized Cooperative Inference for Energy-Efficient and
Low-Latency Mobile Edge Computing

Hyun-Ho Choi
ICT and Robotics Engineering

Hankyong National University, South Korea
hhchoi@hknu.ac.kr

Kisong Lee
Information and Communication Engineering

Dongguk University, South Korea
kslee851105@gmail.com

Abstract—To overcome the limitations of standalone inference
on edge devices or servers, we propose a cooperative inference
method for mobile edge computing (MEC) systems. Using dual
confidence thresholds on a small neural network (NN) at the
edge, ambiguous images are filtered and sent to a larger NN on
the server for reevaluation. We evaluate the method’s accuracy,
delay, and energy consumption, accounting for confidence score
distributions that could trigger false alarms. A joint optimization
problem is formulated to minimize delay and energy consump-
tion by selecting optimal confidence thresholds, transmit power,
and duty cycle while ensuring accuracy. Experimental results
show that this approach significantly reduces delay and energy
consumption while achieving higher accuracy than device-only
inference and lower costs than server-only inference in various
MEC scenarios.

Index Terms—Cooperative inference, mobile edge computing
(MEC), confidence thresholds, joint optimization.

I. INTRODUCTION

Artificial intelligence (AI) functions, often implemented
through deep neural networks (DNNs), demand substantial
computational resources for precise inference. This presents
a significant challenge when deploying DNN models directly
on edge devices such as sensors, cameras, and mobile phones,
which typically have limited processing power and memory.
Running standard-sized DNNs on these resource-constrained
devices increases inference time, making real-time detection
impractical. While using compressed or smaller DNNs de-
signed for edge devices can alleviate this issue, it inevitably
results in a decline in performance concerning accuracy and
reliability.

To tackle this challenge, mobile edge computing (MEC)
introduces powerful servers located near base stations (BS)
[1]. In this architecture, edge devices offload intensive tasks
to edge servers, enabling faster and more accurate processing.
However, this increases data traffic to the BS, resulting in
transmission delays and higher energy consumption. Unre-
liable wireless channels can corrupt data, requiring retrans-
missions, and server overloads can cause queuing delays.
Uploading raw data also introduces privacy concerns [2].

To address the limitations of standalone inference on either
edge devices or servers, cooperative inference has emerged
as a hybrid method [3]–[6]. Various architectures and frame-
works now support DNN training and inference across end
devices, edge servers, and cloud centers [3]. Collaborative

DNN inference architectures balance computational cost and
communication overhead in MEC networks through model
splitting, compression, and feature encoding techniques [5].
Additionally, distributed computing systems dynamically par-
tition DNN inference across heterogeneous edge devices based
on their capabilities and network conditions [6].

In practical MEC applications, cooperative inference tech-
niques have been successfully applied [7]–[10]. An edge-cloud
co-inference method using model splitting and compression
was evaluated for real-time video processing [7]. For risk de-
tection on construction sites, a method employed tiny-YOLO
for coarse edge detection, escalating to YOLOv3 on the central
server for precise detection [8], later extended to an intelligent
edge surveillance system [9]. Additionally, a Raspberry Pi-
based prototype performed initial motion detection on edge,
with suspicious images processed by a cloud server for object
detection [10].

Previous studies have focused on system architecture, al-
gorithms, and evaluations [3]–[6], but have overlooked the
optimization of confidence thresholds, a key parameter affect-
ing inference performance. Typically, confidence thresholds
were either set to default values or adjusted heuristically.
Additionally, most MEC systems have not considered negative
images that may be similar to or mistaken for the positive
images they are supposed to detect [7]–[10]. For instance, fog
or clouds may be misinterpreted as smoke; sunlight or car
lights might be perceived as fire. Considering such potential
negative images is important in system design because false
alarms triggered by these images can inconvenience users, and
if repeated, the system could lose the trust of its customers.

To resolve these gaps, we propose a novel cooperative
inference method where the edge device uses two confidence
thresholds to filter ambiguous input images. Only these am-
biguous images are sent to the edge server, which applies a
single confidence threshold for final evaluation. We analyze
inference accuracy, delay, and energy consumption based on
the confidence score distributions of both positive and negative
images, as well as the device’s transmit power and duty cycle.
We then formulate an optimization problem to find the optimal
confidence thresholds, transmit power, and duty cycle that
minimize the weighted sum of delay and energy consump-
tion while maintaining accuracy. Results indicate a trade-off
between accuracy and cooperation costs, and confirm that

642979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

Large NNSmall NN

Request (image)

Edge Device BS + Edge Server

Response (result)

Result =
Negative

Result =
Negative

Result =
Positive

yes

no no

yes

no

yes

Result =
Positive

TX RX
time
……

 1-

……

Fig. 1. Operation flow of proposed cooperative inference.

the proposed method achieves higher accuracy than device-
only inference while reducing costs compared to traditional
approaches in various MEC environments.

The rest of this paper is organized as follows: Section II
details the proposed cooperative inference method. Section
III analyzes its performance in terms of accuracy, delay,
and energy consumption. Section IV presents the evaluation
results, and Section V concludes the study.

II. PROPOSED COOPERATIVE INFERENCE

Fig. 1 illustrates the operation flow of the proposed coop-
erative inference in a network with an edge device, a base
station (BS), and an edge server. The edge device (e.g., a
camera or smartphone) connects wirelessly to the BS, and the
edge server is directly connected to the BS [11]. Inference
tasks, such as object detection or image classification, are
performed collaboratively between the edge device and server
using DNNs. The edge device, limited by its processing power
and memory, uses a small NN, while the server uses a larger
NN without such constraints [9]. Although the edge server can
handle multiple devices, we simplify the model by considering
a single device and server, as each operates independently with
different scenes [7].

In the proposed cooperative inference, the edge device uses
two confidence thresholds (θl and θh, where θl ≤ θh), and
the edge server uses a single threshold (θs). Let Xd denote
the confidence scores obtained from the edge device and Xs

those obtained from the server. First, if Xd>θh at the device,
the device determines that the confidence in the inference is
sufficient and independently decides to consider the inference
result as positive, i.e., an event of interest has occurred. If
not, and if Xd is greater than θl (i.e., θl < Xd ≤ θh), the
device determines that the confidence score is too ambiguous
to decide and therefore delegates this decision to the server
by transmitting the corresponding image data to it. Lastly,
if Xd ≤ θl, the device determines that the inference result
is negative, i.e., an event has not occurred. That is, if the
confidence scores are sufficiently low or high, the device

trusts its own judgment and concludes the inference by itself.
However, if the confidence scores fall into an ambiguous
range, the device requests additional inference to the server.
This is motivated by the fact that the edge device uses a small
NN that results in lower inference accuracy compared with
the server. To achieve this, the edge device must operate with
dual thresholds, which is a distinguishing feature from the
conventional inference methods that use a single confidence
threshold to decide whether to proceed with further inference
[7]–[10].

Meanwhile, the edge server performs inference using its
large NN on the images received from the edge device. If
the server’s confidence score Xs is greater than θs (i.e.,
Xs>θs), the server determines the inference result as positive
and replies with this result to the edge device. Otherwise
(i.e., Xs ≤ θs), the server responds with the result set as
negative to the edge device. In this way, the server acts as the
final decision-maker for ambiguous images. This is reasonable
because the server can employ a large NN and perform more
accurate inferences. Therefore, this collaboration between
the edge device and the edge server can enhance accuracy.
However, it may increase energy consumption due to uplink
transmission and cause longer delays from transmission and
server processing.

To minimize cooperation overhead, efficient use of wire-
less resources is essential. In this context, we examine the
allocations of the device’s transmission power and transmis-
sion/reception time. As shown in Fig. 1, we adjust the device’s
transmit power (p) and duty cycle (α) when an α portion of
the fixed frame is used for transmission, while the remaining
1−α portion is used for reception [12]. For instance, increasing
the transmit power p can improve transmission rate and reduce
delay but increases energy consumption. Additionally, the duty
cycle α must account for uplink/downlink rate differences and
the size disparity between transmitted image data and received
messages. Thus, transmit power, duty cycle, and confidence
thresholds must be jointly optimized to balance accuracy,
delay, and energy consumption.

III. PERFORMANCE ANALYSIS

In this section, we numerically analyze the performance of
inference accuracy, total delay, and energy consumed by the
end device for device-only inference, server-only inference,
and proposed cooperative inference methods. We denote the
confidence scores of images processed at the device and server
as Xp

d , Xn
d , Xp

s , and Xn
s , respectively, according to whether

the ground truth of the image is positive or negative. Then,
their cumulative distribution functions (CDFs) are defined as
FXp

d
(x), FXn

d
(x), FXp

s
(x), and FXn

s
(x), respectively. That is,

FXj
i
(x)=P (X j

i ≤ x) where i ∈ {d, s} and j ∈ {p, n}.

A. Device-Only Inference

The device-only inference method determines the occur-
rence of an event on the device itself without the assistance
of the server, using a single confidence threshold, θd. If
the confidence score of the input image exceeds θd, the

643

device determines that an event has occurred (i.e., positive).
Otherwise, it determines the result as negative.

From this typical classification, the confusion matrix at
the device, i.e., true positive (TP), false negative (FN), false
positive (FP), and true negative (TN), is expressed as

TPd = 1− FXp
d
(θd), FNd = FXp

d
(θd), (1)

FPd = 1− FXn
d
(θd), TNd = FXn

d
(θd). (2)

Subsequently, the accuracy is defined as

A =
TPd + TNd

TPd + FNd + FPd + TNd
=

TPd + TNd

2
. (3)

Moreover, the delay is simply expressed as the time it takes
for the edge device to perform the inference, and its inference
time is modeled as

D = T inf
d =

NdX
νd

, (4)

where Nd represents the number of floating point operations
(FLOPs) required by the NN used in the edge device for
inference, X is the number of central processing unit (CPU)
cycles required to process one FLOP, and νd is the frequency
of the CPU used in the edge device, measured in Hz.

Additionally, the energy consumed by the device for per-
forming this inference can be expressed as

E = Einf
d = T inf

d Pp =
NdXPp

νd
, (5)

where Pp represents the power consumed in processing at the
edge device, measured in watts.

B. Server-Only Inference

In the server-only inference method, the edge device sends
every input image to the server and fully delegates inference
to the server. The server performs inference on the received
images based on its confidence threshold θs to determine the
occurrence of events. Hence, the confusion matrix at the server
is similarly obtained as

TPs = 1− FXp
s
(θs), FNs = FXp

s
(θs), (6)

FPs = 1− FXn
s
(θs), TNs = FXn

s
(θs). (7)

Subsequently, the accuracy is determined as

A =
TPs + TNs

TPs + FNs + FPs + TNs
=

TPs + TNs

2
. (8)

The transmission and reception rates, Rt and Rr, between
the edge device and the BS can be expressed using the
Shannon capacity as follows:

Rt = αW log2

(
1 +

gp

N0W

)
, (9)

Rr = (1− α)W log2

(
1 +

gPb

N0W

)
, (10)

where g is the channel power gain between the device and the
BS assuming channel reciprocity, W is the bandwidth of the
wireless channel used, Pb is the constant transmit power of
the BS, and N0 is the power spectral density of the noise.

Let f denote the frames per second (fps) of images captured
by the camera on the edge device, St denote the bit size of an
image transmitted to the BS, and Sr denote the bit size of a
result message received from the BS. Then, the traffic amount
transmitted or received by the device per second is fSt and
fSr, respectively. Therefore, the transmission and reception
times for exchanging data between the device and the BS are
calculated as

T tx =
fSt

Rt
=

fSt

αW log2

(
1 + gp

N0W

) , (11)

T rx =
fSr

Rr
=

fSr

(1− α)W log2

(
1 + gPb

N0W

) . (12)

Thus, the total delay for inference is the sum of the trans-
mission delay, the server’s inference time, and the reception
delay, which can be expressed as

D = T tx + T inf
s + T rx

=
fSt

αW log2

(
1+ gp

N0W

)+
NsX
νs

+
fSr

(1−α)W log2

(
1+ gPb

N0W

) ,

(13)

where Ns and νs indicate the number of FLOPs required by
the NN and the frequency of the processing unit used in the
edge server, respectively. Here, the transmission time between
the BS and the edge server is ignored, as they are physically
close to each other [].

For this server-only inference operation, the edge device
does not consume energy for inference processing but must use
energy for transmission and reception. Therefore, the energy
consumption of the device is given by

E = Etx + Erx

= Ec+
fStp

αW log2

(
1+ gp

N0W

)+
fSrPr

(1−α)W log2

(
1+ gPb

N0W

) ,

(14)

where Ec is the constant energy consumed by the device’s
transceiver, and Pr is the power consumed by the device to
receive data.

C. Proposed Cooperative Inference

Fig. 2 shows the probability density function (PDF) of
confidence scores at both the edge device and the edge server
for confusion matrix analysis in the proposed cooperative
inference. First, at the device, the confusion matrix is given
by

TPd = 1− FXp
d
(θh), FNd = FXp

d
(θl), (15)

FPd = 1− FXn
d
(θh), TNd = FXn

d
(θl). (16)

Moreover, as shown in Fig. 2(a), the use of two confidence
thresholds leads us to define uncertain positive (UP) as an
instance of positive data for which the confidence score is
too uncertain to be considered positive. Similarly, uncertain
negative (UN) is defined as an instance of negative data for

644

0 1 0 1

(a) (b)

To server

Fig. 2. Confusion matrix analysis for proposed cooperative inference at (a)
edge device and (b) edge server.

which the confidence score is too uncertain to be considered
negative. Hence, UP and UN at the device are respectively
expressed as

UPd = FXp
d
(θh)− FXp

d
(θl), (17)

UNd = FXn
d
(θh)− FXn

d
(θl). (18)

Thus, the proportion of uncertain images sent to the server, β,
is determined as

β =
UPd + UNd

2
. (19)

Meanwhile, the server receives the images classified as un-
certain from the device. Letting the confidence scores of these
positive and negative images be Xp

s and Xn
s , respectively, the

confusion matrix at the server is represented as

TPs = 1− FXp
s
(θs), FNs = FXp

s
(θs), (20)

FPs = 1− FXn
s
(θs), TNs = FXn

s
(θs). (21)

When the server identifies UPd as positive and UNd as
negative, it has made an accurate decision. Therefore, the
accuracy in the proposed cooperative inference is calculated
as

A =
TPd + TNd + UPd×TPs + UNd×TNs

TPd + FNd + FPd + TNd + UPd + UNd

=
TPd + TNd + UPd×TPs + UNd×TNs

2
. (22)

In the proposed cooperative inference, the performances of
delay and energy consumption vary according to the following
two cases. The first case corresponds to the edge device
making its own decision without offloading to the server,
which occurs with a probability of 1 − β. In this case, the
delay and energy consumption are the same as those of the
device-only inference, as shown in (4) and (5), and can be
written respectively as

D1 = T inf
d =

NdX
νd

, (23)

E1 = Einf
d =

NdXPp

νd
. (24)

The second case corresponds to the edge device not making
a decision and offloading the task to the server, which occurs
with a probability of β. In this case, the amounts of traffic

transmitted from the device to the server and vice versa are
given by βfSt and βfSr, respectively. Thus, the transmission
and reception time, T tx and T rx, between the device and the
BS are expressed as

T tx =
βfSt

Rt
, T rx =

βfSr

Rr
. (25)

Hence, the delay in the second case is given by

D2 = T inf
d + T tx + T inf

s + T rx

=
NdX
νd

+
βfSt

αW log2

(
1 + gp

N0W

) +
NsX
νs

+
βfSr

(1− α)W log2

(
1 + gPb

N0W

) . (26)

In addition, the energy consumption of the device is repre-
sented as

E2 = Einf
d + Etx + Erx

=
NdXPp

νd
+ Ec +

βfStp

αW log2

(
1 + gp

N0W

)

+
βfSrPr

(1− α)W log2

(
1 + gPb

N0W

) . (27)

Finally, from (23), (24), (26), and (27), the average delay and
energy consumption in the proposed cooperative inference are
respectively obtained as

D = (1− β)D1 + βD2, (28)
E = (1− β)E1 + βE2. (29)

D. Proposed Optimization Problem

We need to increase accuracy while decreasing delay and
energy consumption. In relation to these performance metrics,
we can control the confidence thresholds of the edge device
and server (θ⃗ ≜ [θl, θh, θs]), the transmit power of the edge
device (p), and the duty cycle (α). Therefore, we formulate
an optimization problem that minimizes the cooperation cost,
C(p, α, θ⃗), defined as the weighted sum of delay and energy
consumption, while maintaining a certain level of accuracy, as
follows:

min
p,α,θ⃗

C
(
p, α, θ⃗

)
= ωD + (1− ω)E (30)

s.t. A ≥ Γ, (31)
0 ≤ p ≤ Pmax, (32)
0 ≤ α ≤ 1, (33)
0 ≤ θl ≤ θh ≤ 1, 0 ≤ θs ≤ 1, (34)

where ω is the weighting factor to balance between delay
and energy consumption, Γ is the required accuracy, and
Pmax is the maximum transmit power of the edge device.
Note that we solved this optimization problem by applying
traditional convex optimization techniques and utilizing a
greedy search. However, due to space limitations, the detailed
solution method is omitted from this study.

645

TABLE I
PARAMETER SETUP

Description Value
Frame per second f = 10 fps
Weight ω = 0.5
Required accuracy Γ = 0.86 or 0.825
Channel bandwidth W = 1 MHz
Noise power spectral density N0 = –165 dBm/Hz
Transmit power at BS Pb = 43 dBm
Maximum transmit power at device Pmax = 23 dBm
Receive power at device Pr = 0.01 W
Constant energy at transceiver Ec = 0.5 J
Processing power at device Pp = 7 W
Inference time at device T inf

d = 100 ms
Inference time at server T inf

s = 50 ms
Size of result message Sr = 64 bytes
Size of image transmitted St = 32∼1024 KB (default = 256)
Channel gain g = –110∼–50 dB (default = –100)

IV. RESULTS AND DISCUSSION

For performance evaluation, we utilized the parameters
detailed in Table I. We employed object detection models
based on YOLOv8, a prominent deep learning model known
for real-time object detection [13]. Among the five available
sizes of YOLOv8 NN structures, we chose the smallest nano
model for the edge device and the largest xlarge model for the
edge server, considering their respective capabilities [14]. Our
experiment focused on the detection task for fire and smoke
as a representative surveillance service. To achieve this, we
trained the YOLOv8 nano and xlarge models using a fire-
smoke dataset provided in [15]. For the evaluations, we used
500 fire and 500 smoke images not included in the training
set as positive samples, and 250 images each of the sun,
car lights, clouds, and smog, which are easily confused with
fire or smoke, as negative samples [16]. We assumed that
the device’s camera captures 10 frames per second, which
are compressed into jpg format with a resolution of 640×480
pixels for inference and transmission [17]. This compression
results in an average image size of 256 kilobytes, which we set
as the default value. In contrast, the size of a result message
was set to 64 bytes, the minimum frame length for Ethernet
[18].

Fig. 3 compares the considered inference methods in terms
of accuracy, cost, delay, and energy consumption, according
to the presence or absence of resource allocation (RA) and
changes in required accuracy (Γ). Here, two required accura-
cies are considered: Γ=0.86, which is the same as the accu-
racy of the server-only inference, and Γ= 0.825, which cor-
responds to the average accuracy of both the server-only and
device-only inferences. As shown, the device-only inference
has the lowest accuracy but the smallest cost (i.e., the shortest
delay and the least energy consumption), while the server-only
inference has the highest accuracy but the greatest cost. On
the other hand, the proposed cooperative inference achieves the
same accuracy as the server-only inference (i.e., Γ=0.86) but
demonstrates a significantly lower cost. Furthermore, for each
method, applying RA reduces the cost by approximately 50%

w/o RA (=0.86)

w/ RA (=0.86)

w/ RA (=0.825)

Device-only Server-only Proposed
0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

(a)

w/o RA (=0.86)

w/ RA (=0.86)

w/ RA (=0.825)

Device-only Server-only Proposed
0

1

2

3

4

C
o
s
t
(

=
0
.5

)

(b)

w/o RA (=0.86)

w/ RA (=0.86)

w/ RA (=0.825)

Device-only Server-only Proposed
0

1

2

3

4

D
e
la

y
 (

s
)

(c)

w/o RA (=0.86)

w/ RA (=0.86)

w/ RA (=0.825)

Device-only Server-only Proposed
0

1

2

3

4

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

(d)

Fig. 3. Comparison of inference methods: (a) accuracy, (b) cost, (c) delay,
and (d) energy consumption, according to RA and Γ.

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

Accuracy

0

0.5

1

1.5

2

C
o
s
t

Device-only

Server-only

Proposed

Exhaustive search

Fig. 4. Cost vs. required accuracy (Γ).

compared with not using RA. This verifies that optimizing
not only confidence thresholds but also radio resources in
a MEC environment significantly contributes to performance
improvement. Notably, when the required accuracy is slightly
lowered to 0.825, the cost significantly decreases. This is
because the amount of offloading to the server considerably
decreases as Γ decreases. Therefore, the proposed cooperative
inference demonstrates a balanced performance between the
device-only and server-only inferences, achieving higher ac-
curacy than the device-only inference and lower cost than the
server-only inference. The extent of this gain varies according
to the accuracy requirement Γ.

Fig. 4 shows the cost versus the required accuracy (Γ). As Γ
increases, the cost of the proposed inference initially remains
low, comparable to the level of the device-only inference,
but eventually increases once Γ exceeds a certain value. This
implies that a significant amount of additional inference at
the server is necessary to attain a certain high level of Γ.
Nevertheless, the cost of the proposed inference is reduced
to 65% of that of the server-only inference while achieving

646

-110 -100 -90 -80 -70 -60 -50

Channel gain (g) [dB]

0

0.5

1

1.5

2

2.5
C

o
s
t

Device-only

Server-only

Proposed (=0.86)

Proposed (=0.825)

(a)

 32 64 128 256 512 1024

Size of transmitted image (S
t
) [KB]

100

101

C
o
s
t

Device-only

Server-only

Proposed (=0.86)

Proposed (=0.825)

(b)

Fig. 5. Cost vs. (a) channel gain (g) and (b) size of transmitted image (St).

the same accuracy of Γ = 0.86. Furthermore, it is observed
that the performance of the proposed method closely matches
the performance found by the exhaustive search algorithm,
indicating that the proposed optimization algorithm effectively
determines parameters close to the optimal.

Fig. 5(a) shows the cost versus the channel gain (g). The
device-only inference has the lowest constant cost because it is
not affected by the channel, but the other methods experience
a significant decrease in cost as g increases. In particular, the
proposed inference exhibits lower cost than the server-only
inference across most sections. Specifically, when Γ=0.825,
the proposed inference shows significantly lower cost at the
expense of accuracy compared with when Γ=0.86. However,
for Γ = 0.86, its cost intersects with that of the server-only
inference beyond g = −50 dB. This indicates that when g
is extremely high (i.e., good channel quality), the server-only
inference may offer a lower cost than the proposed inference.
This is because the transmission and reception times (T tx and
T rx) become negligible, and the device’s inference time (T inf

d)
is not incurred in the server-only method.

Fig. 5(b) illustrates the cost versus the size of the transmitted
image (St). The device-only inference maintains the lowest
constant cost, but the costs for the other methods significantly
increase as St grows due to the increased overhead for
transmitting image data. Nevertheless, the proposed inference
generally shows reduced costs compared with the server-
only inference in most sections. Notably, when the required
accuracy Γ = 0.825, the proposed inference achieves a very
low cost, albeit with some sacrifice in accuracy. However, at
Γ=0.86, the cost of the proposed inference crosses with that
of the server-only inference around St=80 KB. This implies
that when St is very small (e.g., due to high data compression),
the server-only inference might be more cost-effective than the
proposed inference, as the transmission time T tx required for
offloading to the server becomes minor.

V. CONCLUSION

In this study, we proposed a cooperative inference method
and analyzed its performance in terms of optimizing confi-
dence thresholds, transmit power, and duty cycle to minimize
delay and energy consumption while maintaining accuracy in
MEC systems. The results demonstrated a trade-off between

accuracy and energy-delay costs, with joint optimization of
thresholds and radio resources significantly reducing both
delay and energy consumption. The proposed method struck
a balance between device-only and server-only inference,
achieving higher accuracy than device-only and lower costs
than server-only inference. We expect that this approach
and optimization framework will be valuable in future MEC
networks.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2022R1A2C1011901).

REFERENCES

[1] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 4, pp. 2167–2191, 2020.

[2] P. Joshi, M. Hasanuzzaman, C. Thapa, H. Afli, and T. Scully, “Enabling
all in-edge deep learning: A literature review,” IEEE Access, 2023.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[4] W.-Q. Ren, Y.-B. Qu, C. Dong, Y.-Q. Jing, H. Sun, Q.-H. Wu, and
S. Guo, “A survey on collaborative DNN inference for edge intelli-
gence,” Machine Intelligence Research, vol. 20, no. 3, pp. 370–395,
2023.

[5] J. Shao and J. Zhang, “Communication-computation trade-off in
resource-constrained edge inference,” IEEE Communications Magazine,
vol. 58, no. 12, pp. 20–26, 2020.

[6] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Co-
operative DNN inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Transactions on Networking,
vol. 29, no. 2, pp. 595–608, 2021.

[7] P. M. Grulich and F. Nawab, “Collaborative edge and cloud neural
networks for real-time video processing,” Proceedings of the VLDB
Endowment, vol. 11, no. 12, pp. 2046–2049, 2018.

[8] Y. Zhao, Q. Chen, W. Cao, W. Jiang, and G. Gui, “Deep learning
based couple-like cooperative computing method for IoT-based intel-
ligent surveillance systems,” in 2019 IEEE 30th Annual International
Symposium on PIMRC. IEEE, 2019, pp. 1–4.

[9] Y. Zhao, Y. Yin, and G. Gui, “Lightweight deep learning based intel-
ligent edge surveillance techniques,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 4, pp. 1146–1154, 2020.

[10] A. A. Ahmed and M. Echi, “Hawk-Eye: An AI-powered threat detector
for intelligent surveillance cameras,” IEEE Access, vol. 9, pp. 63 283–
63 293, 2021.

[11] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin et al., “MEC in
5G networks,” ETSI white paper, vol. 28, no. 2018, pp. 1–28, 2018.

[12] G. Vermeeren, L. Verloock, S. Aerts, L. Martens, and W. Joseph,
“In situ assessment of uplink duty cycles for 4G and 5G wireless
communications,” Sensors, vol. 24, no. 10, p. 3012, 2024.

[13] F. M. Talaat and H. ZainEldin, “An improved fire detection approach
based on YOLO-v8 for smart cities,” Neural Computing and Applica-
tions, vol. 35, no. 28, pp. 20 939–20 954, 2023.

[14] A. Chaurasia and G. Jocher, “Ultralytics YOLOv8 documentation,”
https://docs.ultralytics.com/, 2023, accessed: 2024-02-02.

[15] Shahriar, “Fire smoke dataset,” Sep 2022. [Online]. Available:
https://universe.roboflow.com/shahriar-yytxo/fire-smoke-5wzrh

[16] “Overview of crawling and indexing topics,” Mar 2024. [Online].
Available: https://developers.google.com/search/docs/crawling-indexing

[17] A. Rego, A. Canovas, J. M. Jiménez, and J. Lloret, “An intelligent system
for video surveillance in IoT environments,” IEEE Access, vol. 6, pp.
31 580–31 598, 2018.

[18] H.-H. Choi, K. Lee, and K.-H. Lee, “Optimizing confidence thresholds
for cooperative inference in edge-AI surveillance systems: Avoiding the
fate of ‘the boy who cried wolf’,” in IEEE 22th Consumer Communi-
cations Networking Conference (CCNC), 2025, pp. 1–6.

647

