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Abstract—The reconstruction of 3D face shapes and 
expressions from 2D images remains unconquered due to the 
lack of detailed modeling of human facial movement based on 
the correlation between the different parts of faces. We propose 
to use facial action units (AUs), which are detailed taxonomy of 
the human facial movements based on observation of activation 
of muscles or muscle groups, in the 3D facial expression 
reconstruction to allow for detailed modeling of various facial 
expression types. We present a novel 3D face reconstruction 
framework called Action Unit feature-based Graph Attention 
Network Encoder (AUGANE) that can generate a 3D face model 
that is responsive to AU activation given a single monocular 2D 
image to capture expressions. AUGANE leverages AU-specific 
features as well as facial global features to enable accurate 3D 
facial expression reconstruction with Graph Attention Network 
Encoder (GANE). We also introduce a novel loss function which 
is to force learning toward the minimal discrepancy in AU 
activation between the input and rendered reconstruction. The 
experimental results demonstrate the superior performance of 
the proposed framework over state-of-the-art methods.   

Keywords—3D face reconstruction, action units, graph 
attention, transformer, 3DMM 

I. INTRODUCTION  
In recent years, rapid advances in deep learning 

technology have led to numerous innovative achievements in 
computer vision and graphics research. 3D face reconstruction 
from 2D images has received a tremendous amount of 
attention in computer vision and has made major progresses 
thanks to the highly accurate modeling capability of deep 
neural networks. 3D face reconstruction enables various 
applications such as speech-driven 3D facial animation, 3D 
avatar generation, virtual makeup, performance capture, 
virtual and augmented reality, and human-robot interaction 
[1][2][3][4][5][6]. 

Most existing studies use pre-computed 3D morphable 
models (3DMMs) to incorporate prior knowledge about facial 
geometry and appearance [7]. These methods take advantage 
of the rich information stored in 3DMM to improve the 
accuracy and fidelity of reconstructed 3D faces [8]. In recent 
studies, deep neural networks have been employed to predict 
the parameter values of 3DMM based on self-supervised 
learning, which project the reconstructed 3D face into the 
image plane to generate rendered image and calculate various 
loss functions such as landmark reprojection loss, face 
recognition loss, and photometric loss [9][10][11]. 

In recent studies, it has been pointed out that depending on 
such loss functions only is insufficient for capturing rich and 
subtle facial expressions [12]. EMOCA employed an emotion 
consistency loss function which computes the distance 
between the emotion recognition network outputs of input and 
rendered image during the training process in order to ensure 
that the two images convey emotions that are perceptually 

similar. SPECTER employed a perceptual lip movement loss 
function that can express visual speech information as a 3D 
face by applying lip reading recognition to input and rendered 
images [13]. 

Facial AUs are detailed taxonomy of the human facial 
movements and defined based on observation of activation of 
a muscle or muscle group. Unlike categorized emotion models, 
AUs provide comprehensive and objective means to 
characterize human facial expressions [14][15]. Thus, we try 
to include AUs in the 3D facial expression reconstruction for 
the detailed modeling of various facial expression types. 

In this paper, we propose a novel 3D face reconstruction 
framework called AU feature-based Graph Attention Network 
Encoder (AUGANE). AUGANE utilizes features generated 
from a pretrained AU-specific Feature Generator (AFG) of 
state-of-the-art AU detection framework, named ME-
GraphAU [15], and the global facial features generated from 
a pretrained 3D face reconstruction network, named DECA 
[9]. We introduce the Graph Attention Network Encoder 
(GANE)-based 3D face reconstruction model to predict 3D 
face reconstruction parameter values from these features. 
GANE learns the relationships between these generated 
features through graph attention mechanism with Graph 
Attention Network (GAT), and predict 3D face reconstruction 
parameter values with transformer encoder. In addition, we 
introduce novel AU-based loss functions such as AU-
weighted landmark reprojection loss function, AU-based 
relative distance loss function, and AU feature loss function 
which is to force learning toward the minimal discrepancy in 
AU activations between the face in an input image and the 
reconstructed 3D face. 

This paper is organized as follows: In section 2, a brief 
introduction to some background knowledge on 3D face 
models, 3D face reconstruction and facial AUs are provided. 
In section 3, the proposed framework is explained in detail 
followed by the experimental results. Finally, we end our 
discussion with the concluding remarks. 

II. BACKGROUNDS 

A. 3D Face Models 
Vetter and Blantz explained a method for reconstructing a 

3D face from a single image with a pre-computed 3DMM in 
an analysis-by-synthesis fashion [7]. 3DMM is statistical 
models capable of capturing and representing various facial 
changes in low-dimensional space. These models are built 
from a vast amount of 3D facial scan data. The traditional 
3DMM was based on Principal Component Analysis (PCA) 
for facial shape, but recent models such as FLAME, Basel 
Face Model, FaceWarehouse have separated shape, 
expression, and appearance spaces, enabling richer 
representations [7][8]. 
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FLAME was trained on 33,000 scan data and represents 
shape, pose, and expression parameters in well-separated 
spaces through an effective parameter separation process. 
FLAME consists of a template mesh, shape blendshapes, pose 
blendshapes, and expression blendshapes. Each blendshape is 
composed of displacements from the template mesh, with 
PCA applied to shape and expression. They applied an 
iterative optimization approach for each parameter during the 
model training process to separate the spaces of each 
parameter. Through the combination of parameter space 
separation and the utilization of multiple scan data, FLAME 
enables easier and more accurate facial reconstruction 
compared to other 3DMM models. For this reason, FLAME is 
by far the most widely used choice for tasks involving 3D 
faces. In this paper, we leverage FLAME as a powerful and 
expressive tool in modeling facial geometry and expressions. 

B. 3D Face Reconstruction 
In 3D face reconstruction research using 3DMM, it is 

common to estimate model parameters most suitable for RGB 
images. The direct optimization procedure is mainly carried 
out through an analysis-by-synthesis framework to estimate 
the model parameters. Optimization-based frameworks were 
used in early studies. However, optimization-based methods 
were later replaced by deep learning-based approaches due to 
the computational complexity and long processing times for 
each image. Deep learning-based methods that directly learn 
the mapping between 2D images and 3D faces have grown 
rapidly over the last few years, becoming a standard choice to 
replace a wide range of statistical model fitting [9][10]. 

Early deep learning-based 3D face reconstruction methods 
faced challenges related to the training dataset and training 
strategies. They were required to collect numerous 3D facial 
scan data corresponding to 2D images to train a deep learning-
based model. However, this was hampered by the cost and 
inefficiency of obtaining numerous 3D facial scan data. A 
self-supervised learning framework was proposed that 
minimizes the difference between input images and rendered 
images to address this issue. The self-supervised learning 
framework utilizes a differentiable renderer to directly 
calculate the difference between input and rendered images, 
enabling end-to-end learning [17]. For effective optimization 
of the self-supervised learning approach in 3D face 
reconstruction, a training strategy is essential. RingNet [11] 
and DECA [Feng et al., 2021] applied a landmark-based 
training strategy by predicting landmarks for input images and 
using them indirectly as pseudo ground truth. They use 
landmark reprojection loss which computes the distance 
between the ground-truth 2D face landmark and its 
corresponding landmark on the surface of the 3DMM, 
projected onto the image. Additionally, EMOCA [12] 
employed a perception-based training strategy by utilizing a 
deep learning-based emotion recognition model as a feature 
extractor to minimize the distance of features for input and 
rendered images. 

C. Facial AUs 
AU detection involves analyzing facial expressions to 

detect independent movements in each region of the face [16]. 
Actual facial movements and expression styles vary widely 
across individuals [14]. The Facial Action Coding System 
(FACS) was developed to represent human expressions 
independently of each individual [18]. FACS encodes facial 
movements into AUs based on the observations of activation 
of the facial muscles or muscle groups. 

Research on automated AU detection has been actively 
conducted, which is useful in tasks related to image-based 
facial behavior analysis [19]. AU detection can be formulated 
as a multi-label classification problem, and research based on 
machine learning and deep learning for this task has been 
actively conducted. In addition, each AU has underlying 
relationships emphasizing the need to consider these 
relationships in AU detection research [20]. ME-Graph AU 
[15] utilized a Convolutional Neural Network (CNN) and 
Graph Neural Network (GNN)-based model for AU detection, 
considering the relationships between AUs. Initially, a CNN-
based network generates a facial representation for the input 
image. The AU-specific Feature Generator (AFG), composed 
of Fully Connected layers (FC layer) and Global Average 
Pooling layer (GAP layer), extracts AU-specific features from 
the overall facial representation. To model the relationships 
between the extracted AU features, a GNN-based network 
produces an AU relation graph. The AU relation graph 
includes relationships for each pair of AUs and predicts the 
activation probabilities and co-occurrence patterns of AUs. 
ME-GraphAU demonstrated state-of-the-art performance in 
AU detection benchmarks BP4D [21] and DISFA [22]. In this 
paper, we apply these AU characteristics to 3D face 
reconstruction, enhancing the performance of 3D expression 
representation. 

III. AUGANE 

A. Architecture 
Figure 1 shows the overall architecture AUGANE 

framework. AUGANE learns the relation graph among AU-
specific features and the global facial representation to predict 
accurate 3D face reconstruction parameter values. The 
activation of AUs has an individual relationship with each 
other and describes the overall facial expression [15][18]. We 
represent and model the relationships among the AU-specific 
features and the global facial features by using a graph 
structure, inspired by the previous research works in [20][23] 
which consider the AU features only.  

We employ the pre-trained AFG block from ME-GraphAU 
to generate the AU-specific features from the face in an image. 
The AFG is encouraged to generate the AU-specific features 
dedicated to the AU detection model. The AU-specific 
features contain both AU activation status and their 
associations for each facial display. These features can 
provide a richer representation of subtle details in facial 
expressions. The AFG takes an input image and generates 
AU-specific features as: 

  𝑽𝑽𝑨𝑨𝑨𝑨𝑨𝑨 = {�⃗⃗�𝒗 𝟏𝟏, �⃗⃗�𝒗 𝟐𝟐,… , �⃗⃗�𝒗 𝑵𝑵}, �⃗⃗�𝒗 𝒊𝒊 ∈ ℝ𝟓𝟓𝟏𝟏𝟐𝟐, (1) 
where  is the number of AU-specific features. The DECA 
pretrained 3D face reconstruction model is used as a facial 
global feature generator. The DECA encoder is composed of 
a CNN and a FC layer. The CNN extracts the global face 
representation 𝑿𝑿𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨 ∈ ℝ𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐  while the FC layer generates 
the 3D face reconstruction parameters 𝚯𝚯𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨 ∈ ℝ𝟐𝟐𝟐𝟐𝟐𝟐  from 
𝑿𝑿𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨 . The global face representation 𝑿𝑿𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨  contains 
generalized global features of a face in the input image. The 
AU-specific features 𝑉𝑉𝑨𝑨𝑨𝑨𝑨𝑨  and the facial global features 
𝑿𝑿𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨 are concatenated to form the input for GANE such that: 

  𝑽𝑽𝑨𝑨𝑨𝑨𝑵𝑵𝑫𝑫 = 𝑽𝑽𝑨𝑨𝑨𝑨𝑨𝑨 ∥ 𝑿𝑿𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨𝑫𝑫,𝑫𝑫 ∈ ℝ𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐×𝟓𝟓𝟏𝟏𝟐𝟐 (2) 
where ∥  is the concatenation operator, and 𝑫𝑫  is the 

trainable linear projection. The overall procedure of 

637



generating 𝑽𝑽𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  from an input with AFG and DECA is 
illustrated in Figure 1. 

We propose GANE, a deep learning model on graph-
structured data, which regresses 3D face reconstruction 
parameter values from generated node features 𝑽𝑽𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 . 
GANE is composed of a GAT for learning relationships 
within nodes and a transformer encoder for predicting 3D 
face reconstruction parameter values from the captured 
relation graph and generated features. Since the underlying 
relationship present in the activation of AUs is independent 
from each other, it is appropriate to model their relationships 
through GAT. The GAT enables flexible representation of the 
graph by dynamically assigning weights and can capture the 
different importance between neighboring nodes [24]. This 
capability makes it suitable for handling the asymmetric 
characteristics of activation of AUs. The GAT takes 𝑽𝑽𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 
as its input and produces the attention embedded node feature 
such that: 

  𝑽𝑽′𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = {�⃗⃗�𝒗 ′𝟏𝟏, �⃗⃗�𝒗 ′𝟐𝟐,… , �⃗⃗�𝒗 ′𝑮𝑮, �⃗⃗�𝒗 ′𝑮𝑮+𝟏𝟏}, �⃗⃗�𝒗 ′𝒊𝒊 ∈ ℝ𝟓𝟓𝟏𝟏𝟐𝟐. (3) 
The generated features represent visual features related to 

specific or global parts of the face. Following the approach by 
a previous study, where they show that the transformer can 
operate on patches extracted from irregular grids, allowing for 
the utilization of visual tokens from irregular facial regions 
without the need for uniform spaced sampling [25], we input 
AU-specific features and global facial features into a 
transformer encoder to predict expression parameter values 
for 3D face reconstruction. The transformer encoder receives 
𝑽𝑽′𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  and then maps 𝑽𝑽′𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  to 3D face reconstruction 
parameters 𝚯𝚯𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 . The trainable parameter query token 𝑻𝑻𝑸𝑸 
and 𝑽𝑽′𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  are concatenated and fed into the input of the 
transformer encoder. Figure 1(c) shows how GANE generates 
3D face reconstruction parameter values.  

The 3D face reconstruction parameter values 𝚯𝚯𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  are 
handed over to the FLAME decoder for the 3D face 
reconstruction. The differentiable renderer then renders the 

final image from the reconstructed 3D face. The differentiable 
renderer enables end-to-end training. Finally, the loss between 
the input image 𝑰𝑰 and the rendered image 𝑰𝑰𝑹𝑹𝑹𝑹 is calculated to 
train the proposed model. 

B. Loss Functions 
GANE is trained by minimizing the total loss: 

  𝑳𝑳𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 =  𝑳𝑳𝒕𝒕𝒂𝒂𝑳𝑳𝒂𝒂𝒂𝒂 + 𝑳𝑳𝒕𝒕𝒂𝒂𝑹𝑹𝑹𝑹𝒕𝒕 + 𝑳𝑳𝒕𝒕𝒂𝒂𝒂𝒂𝑹𝑹𝒕𝒕𝒕𝒕 + 𝑳𝑳𝒓𝒓𝑹𝑹𝒓𝒓. (4) 
 

We explain below each of these loss functions in more detail.   

a) AU-weighted landmark reprojection loss: The 
movement of landmarks triggered by the activation of AUs is 
known to serve as an effective means to describe the AUs 
[26]. 𝑳𝑳𝒕𝒕𝒂𝒂𝑳𝑳𝒂𝒂𝒂𝒂  assigns dynamic weights to the facial regions 
where AUs are activated to encourage the accurate 
representation of AUs in the reconstructed face. This enables 
GANE to pay more attention to activated AUs during the 
training process. The AU-weighted landmark reprojection 
loss function is defined as: 

  𝑳𝑳𝒕𝒕𝒂𝒂𝑳𝑳𝒂𝒂𝒂𝒂 = ∑ ∑ 𝒑𝒑𝒊𝒊‖𝒂𝒂𝒋𝒋 − 𝒔𝒔𝜫𝜫(𝑴𝑴𝒋𝒋) + 𝒕𝒕‖𝟏𝟏
𝑳𝑳𝒊𝒊
𝒋𝒋=𝟏𝟏

𝑮𝑮
𝒊𝒊=𝟏𝟏 , (5) 

where 𝑮𝑮 is the number of AUs, 𝑳𝑳𝒊𝒊 is the number of landmarks 
related to 𝒊𝒊𝒕𝒕𝒕𝒕  AU, 𝒑𝒑𝒊𝒊  is the activation status of the 𝒊𝒊𝒕𝒕𝒕𝒕  AU 
predicted by ME-GraphAU, 𝒂𝒂𝒋𝒋 is the 𝒋𝒋𝒕𝒕𝒕𝒕 landmark coordinate 
in the input image and the 𝑴𝑴𝒋𝒋 is corresponding landmark on 
the FLAME model’s surface. 𝒔𝒔,𝜫𝜫, 𝒕𝒕 represent the predicted 
camera parameters, denoting the isotropic scale 𝒔𝒔 , 
orthographic 3D-2D projection matrix 𝜫𝜫, and 2D transition 𝒕𝒕, 
respectively. The Mediapipe [27] landmark detector is used to 
predict landmarks from 2D images based on a total of 105 
landmarks distributed across the eyebrows, eyes, nose, and 
mouth regions.  

b) AU-based relative distance loss: The AU-based 
relative distance loss computes the relative distance between 
AU configural features for image landmarks and the 

Figure 1 Overview of architecture for AU-guided 3D face reconstruction with AUGANE. (a) Pretrained AU-
specific feature generator receives input image and generate AU-specific features. (b) Pretrained DECA encoder 
receives input image and generate global facial features as well as 3D face reconstruction parameter values. (c) 
Our GANE-based model receives both AU-specific features and global facial features and predict 3D face 
reconstruction parameter values. 
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projected 3D landmarks. The AU configural features involve 
calculating relative distances between facial landmark points 
and are used to determine AUs [28]. For example, Brow 
Lowerer AU is determined based on the distance between the 
landmark points 21 and 22, which correspond to the inner 
eyebrow landmarks on the left and right. This type of loss 
function is similar to eye closure loss of DECA, which 
computes an error in the relative offset between landmarks on 
the upper and lower eyelids for image landmarks and their 
corresponding projected 3D landmarks. We extend this 
approach in the context of AU by incorporating configural 
features. The AU-based relative distance loss computes the 
errors in configural features of image landmarks 𝒌𝒌  and 
corresponding 3D landmarks 𝑴𝑴  projected onto the image 
plane: 

  𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 = ∑ ‖𝒄𝒄𝒊𝒊𝒌𝒌 − 𝒄𝒄𝒊𝒊
𝒔𝒔𝒔𝒔(𝑴𝑴)‖𝟏𝟏

𝟐𝟐𝟐𝟐
𝒊𝒊=𝟏𝟏  (6) 

where 𝒄𝒄𝒊𝒊𝒌𝒌  and 𝒄𝒄𝒊𝒊
𝒔𝒔𝒔𝒔(𝑴𝑴)  are 𝒊𝒊𝒕𝒕𝒕𝒕  configural features of image 

landmarks 𝒌𝒌  and projected 3D landmarks 𝒔𝒔𝒔𝒔(𝑴𝑴) . The 
proposed configural features from [28] are defined using 66 
landmarks model, but we modify landmark model with 105 
landmarks from HRNet. The landmark indices and configural 
features corresponding to each AU are described in Table 1. 

c) AU feature loss: The AU feature loss computes the 
distances between the AU-specific features of the input image
𝑰𝑰 and the rendered image 𝑰𝑰𝒂𝒂𝒂𝒂: 

 
  𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒕𝒕 = ‖𝑨𝑨𝒂𝒂𝑨𝑨(𝑰𝑰) − 𝑨𝑨𝒂𝒂𝑨𝑨(𝑰𝑰𝒂𝒂𝒂𝒂)‖𝟐𝟐. (7) 
Optimizing this loss during training encourages the 
reconstructed 3D face to convey AU activations that are 
visually similar to the image.  

d) Parameter regularizer. 𝑳𝑳𝒓𝒓𝒂𝒂𝒓𝒓  regularizes expression 
𝛙𝛙, pose 𝛉𝛉, camera parameters 𝐜𝐜 and is formulated as: 

  𝑳𝑳𝒓𝒓𝒂𝒂𝒓𝒓 = ‖𝝍𝝍‖𝟐𝟐𝟐𝟐 + ‖𝜽𝜽‖𝟐𝟐𝟐𝟐 + ‖𝒄𝒄‖𝟐𝟐𝟐𝟐 (8) 

IV. EXPERIMENTS 

A. Implementation Details 
AUGANE is trained with a total of approximately 300,000 

images from VGGFace2, Aff-wild2, CelebA-HQ, FFHQ, and 
BUPT-CB [29][30][31][32][33]. We use PyTorch3D to 
render the reconstructed 3D face onto the image plane. In 
addition, we use the Adam optimizer to optimize parameters 
during the training process, and the learning rate is 1e-05, the 
batch size is 16, and the epoch is 15. For parameter 
regularization, 1e-05 is applied to the expression parameter, 
and 0.1 is applied to the pose parameter. The loss function 
weighting parameters for each loss function is 0.75 for the 
𝑳𝑳𝒂𝒂𝒂𝒂𝑳𝑳𝒂𝒂𝒌𝒌 , 0.25 for the 𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 , and 0.75 for the 𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒕𝒕. The 
GANE model predicts only the expression 𝝍𝝍, pose 𝜽𝜽, and 
camera 𝒄𝒄 parameter values among the 3D face reconstruction 
parameters, and DECA predicts the shape 𝜷𝜷𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨, light 𝒂𝒂𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨, 
albedo 𝒂𝒂𝑫𝑫𝑫𝑫𝑫𝑫𝑨𝑨 parameter values. 

B. Quantatative Evaluations 
While standard benchmarks exist for quantitative 

evaluating the identity face shape in the context of 3D face 
reconstruction [34], there is currently no benchmark 
specifically designed to evaluate the performance of the 
expression reconstruction methods.  

TABLE 1. FACIAL AUS AND CORRESPONDING FACIAL 
LANDMARKS 

Facial 
parts Related AUs Involved landmarks 

Brow Brow Lowerer 0, 1, 2, …, 19 
Inner 
brow 

Inner Brow 
Raiser 

1, 3, 5, 6, 8, 9, 11, 13, 15, 16, 
18, 19 

Outer 
brow 

Outer Brow 
Raiser 

Elements excluding Inner 
brow from Brow 

Eye Lid Tightener 20, 21, …, 51 
Lower 

eye Cheek Raiser 20, 21, …, 27, 33, 36, 37, …, 
43, 49 

Upper 
eye 

Upper Lid 
Raiser 

Elements excluding Lower 
eye from Eye 

Nose Nose Wrinkler 52, 53, …, 64 

Mouth 
Lip Pucker,  
Lip Stretch,  

Lip Tightener 
65, 66, …, 104 

Upper 
mouth 

Upper Lip 
Raiser 

65, 66, 69, 70, …, 76, 85, 86, 
…, 94, 103, 104 

Mouth 
corner 

Lip Corner 
Puller, Lip 

Corner 
Depressor 

71, 72, 73, 74, 79, 80, 81, 82, 
85, 86, 88, 89, 90, 91, 92, 93, 

97, 98, 99, 100, 103, 104 

 

When evaluating the expression of a 3D face by measuring 
the difference between the reconstructed 3D face with a 
ground-truth scan, the error from the scan is significantly 
influenced by the facial identity. As a result, we objectively 
evaluate the methods through a comparison of AU activation 
states detected by ME-GraphAU between input images and 
rendered images. We employ the DISFA dataset [22] for 
quantitative evaluation, as it serves as one of the training 
datasets for ME-GraphAU. This choice is made with the 
confidence that the AU detection model will effectively detect 
AU activation states during the evaluation. The DISFA dataset 
contains 27 subjects watching a video and consists of 130,815 
frames. We select and evaluate with the top 9 videos based on 
the number of detected AU activations to select videos with 
diverse facial expressions among the 27 videos. The 
evaluation results for each subject, and evaluation results for 
each AU are reported in Tables 2 and 3.  

In the per-subject evaluation results presented in Table 2, 
AUGANE outperforms both DECA and EMOCA for all 
subjects. Table 3 provides an evaluation per-AU. Among the 
evaluated AUs, AU1 (Inner Brow Raiser) and AU2 (Outer 
Brow Raiser) are observed through the contraction of the 
frontalis muscle, resulting in central forehead wrinkles and 
eyebrow movements [34]. However, within the scope of this 
paper, considering detailed reconstruction was not pursued. 
Detecting these AUs from 3D faces reconstructed by 
AUGANE, DECA, and EMOCA becomes challenging. 
Consequently, a F1 score of 0 is recorded for all methods. On 
the other hand, AUGANE demonstrated superior performance 
compared to both DECA and EMOCA for AUs related to the 
upper face (AU1, 2, 4, 5, 7). Particularly, for AU 4 (Brow 
Lowerer), it exhibited performance that was 5 times higher 
than DECA and 1.5 times higher than EMOCA. In addition, 
for the lower face, AUGANE surpassed DECA significantly 
and showed performance either surpassing or comparable to 
EMOCA for some AUs. In conclusion, the average F1 scores 
were 0.39, 0.18, and 0.30 for AUGANE, DECA, and EMOCA, 
respectively, confirming that AUGANE achieved the highest 
performance.  
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TABLE 2. PER-SUBJECT F1 SCORE EVALUATION RESULTS FOR 
AU DETECTION ON INPUT IMAGES AND RENDERED IMAGES 

 

C. Qualatative Evaluations 
For qualitative evaluation, we employ 300W dataset and 

the DISFA dataset. Figure 2 shows the 3D face reconstruction 
results for the 300W dataset. We highlighted with red boxes 
when there were errors, and with green/blue boxes when the 
upper and lower faces were reconstructed accurately. Here,  

AUGANE captures facial movements better than DECA 
and EMOCA. with more robust reconstruction performance 
for upper facial movements. In addition, AUGANE can 
express AU 12 (Lip Corner Puller) and AU 15 (Lip Corner 
Depressor) more accurately than DECA and EMOCA.  

The experimental results for the DISFA dataset are 
presented in Figure 3. From left to right, two close frames are 
shown for subjects 3, 16, and 27 in the DISFA dataset. 
EMOCA and AUGANE capture and reconstruct accurate 
facial movements within nearby frames. AU 25 (Lips part) of 
Subject 16 is observable in both DECA and AUGANE, while 
AU 1 and 2 are observable in EMOCA and AUGANE. 
Additionally, AUGANE captured the subtle activation 
changes of AU 1 between adjacent frames of Subject 27. In 
summary, AUGANE's performance is confirmed to be 
comparable to state-of-the-art models such as DECA and 
EMOCA, while surpassing them in certain scenarios.  

TABLE 3. PER-AU F1 SCORE EVALUATION RESULTS FOR AU 
DETECTION ON INPUT IMAGES AND RENDERED IMAGES 

 

 

Subject Method 
AUGANE DECA EMOCA 

03 0.46 0.23 0.24 
06 0.35 0.13 0.32 
11 0.45 0.18 0.30 
12 0.46 0.30 0.43 
16 0.43 0.05 0.24 
18 0.45 0.19 0.25 
23 0.27 0.16 0.24 
25 0.34 0.21 0.25 
27 0.33 0.07 0.30 

Avg. 0.39 0.18 0.30 

AU Method 
AUGANE DECA EMOCA 

01 0.00 0.00 0.00 
02 0.00 0.00 0.00 
04 0.47 0.09 0.30 
05 0.24 0.08 0.12 
07 0.78 0.47 0.64 
09 0.17 0.00 0.21 
10 0.83 0.47 0.81 
12 0.84 0.40 0.86 
15 0.13 0.00 0.02 
20 0.04 0.01 0.06 
23 0.28 0.03 0.02 
26 0.56 0.46 0.36 

Avg. 0.39 0.18 0.30 

Figure 2 Visual comparison with DECA, EMOCA, and AUGANE on the 300W dataset. 
 

Figure 3 Visual comparison with DECA, EMOCA, and 
AUGANE on the DISFA dataset. From top to bottom: 
Input image, DECA, EMOCA, AUGANE. 
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