
Enhancing Byzantine Fault Tolerance in
Blockchain Networks through Dynamic

Clustering
Teppei Okada∗, Noriaki Kamiyama† and Akihiro Fujihara‡

∗Graduate School of Information and Engineering, Ritsumeikan University, Osaka 567-8570, Japan
†College of Information and Engineering, Ritsumeikan University, Osaka 567-8570, Japan

‡Faculty of Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
Email: is0498ex@ed.ritsumei.ac.jp, kamiaki@fc.ritsumei.ac.jp, akihiro.fujihara@p.chibakoudai.jp

Abstract—In recent years, blockchain technology, which
enables transactions to be distributed across multiple com-
puters and managed in an immutable and secure manner,
has garnered significant attention. Within blockchain net-
works, consensus mechanisms ensure the consistent sharing
of ledger information when new blocks are added. In
consortium blockchains, typically employed by a limited
number of organizations, the Practical Byzantine Fault Tol-
erance (PBFT) protocol is widely used. PBFT is designed to
tolerate Byzantine nodes―nodes that may be compromised
or malfunctioning―by achieving consensus as long as fewer
than one-third of the total nodes are Byzantine. However,
PBFT relies on the assumption that at least two-thirds of
the nodes behave correctly, making consensus challenging
when the number of malicious nodes exceeds this threshold.
Previous research has explored the use of clustering to
enhance throughput, but these methods are static and
unsuited to dynamic environments. Moreover, clustering
techniques aimed at bolstering Byzantine resistance remain
underexplored. This paper presents a novel method for
constructing clusters within a blockchain network to resist
Byzantine nodes. By employing clustering, we estimate
the locations of potential attackers, thereby enhancing the
system’s resilience to Byzantine faults.

I. INTRODUCTION

Blockchain is a technology that allows for the secure,
tamper-resistant sharing and management of transactions
across multiple computers using a distributed ledger.
There are three primary types of blockchain: public,
private, and consortium. Public blockchains offer high
transparency without a central administrator, but their
main drawback is that transaction processing and ap-
proval times can increase significantly as the number
of participants and transaction volume grows. In con-
trast, private blockchains restrict participation to a single
administrator, allowing for faster approval times and
limited data disclosure. However, this comes at the
expense of decentralization, as authority is concentrated
in the hands of the administrator.

The consortium type falls between the public and
private blockchains, with multiple administrators sharing
control. While processing times are slower compared
to private blockchains, the decentralized distribution of

authority makes consortium blockchains more resistant
to data tampering.

Additionally, blockchains use consensus mechanisms
where new blocks or transactions are verified by all
participants upon creation, allowing for the detection
and elimination of potentially falsifiable transactions. In
consortium blockchains, the Practical Byzantine Fault
Tolerance (PBFT) mechanism [1] is commonly em-
ployed.

In PBFT, consensus can be correctly achieved as long
as the number of Byzantine nodes is less than one-third
of the total number of nodes. Conversely, PBFT requires
that more than two-thirds of the nodes are functioning
correctly, which complicates the agreement process if
the number of attackers exceeds a certain threshold, as
illustrated in Figure 1.

Fig. 1: PBFT

Thus, consensus in PBFT is influenced by the pres-
ence of Byzantine nodes. This paper proposes a method
to enhance resilience against Byzantine attacks by par-
titioning the topology through clustering, estimating the
locations of attackers, and concentrating them within
specific clusters. While the proposed method aims to
achieve correct consensus, there is a concern that this
may lead to increased communication traffic. Therefore,
we compare the probability of consensus formation with
the amount of communication traffic generated when
employing the proposed method.

420979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

The main contributions of this study are as follows:
• In PBFT, which requires more than two-thirds of

participants to be normal nodes for consensus to
be achieved, the proposed method enables correct
consensus even when fewer than two-thirds of the
nodes are functioning normally.

• We conduct a theoretical analysis of the upper limit
of consensus probability, demonstrating that the
simulation results align with the theoretical values.

• We also analyze the upper limit of communica-
tion traffic volume theoretically, deriving analytical
results that elucidate the relationship between the
number of clusters and traffic volume.

In Section II, we discuss related works, while the
proposed method is outlined in Section III. Section IV
presents the performance evaluation, and we conclude
with a summary in Section V.

II. RELATED WORK

PBFT [1] consists of a client, replica nodes, and a
primary node. Clients generate transactions and send
them to the network, while replica nodes represent the
nodes within that network. The primary node, designated
from among the replica nodes, receives transactions from
clients and forwards them to the other replica nodes.
To achieve precise agreement, consensus is reached
through three phases―pre-prepare, prepare, and commit
―following the client’s submission of the transaction to
the primary node, as illustrated in Figure 2.

• pre-prepare phase:
The primary node forwards the transaction to the
other replica nodes. Each receiving node verifies the
validity of the transaction and subsequently broad-
casts the verification results to the other nodes.

• prepare phase:
The replica nodes confirm that the verification
results match those provided by the primary node
and then broadcast their results to the other nodes.

• commit phase:
If a node agrees with the message received during
the prepare phase, it sends a commit message to
the other nodes.

Finally, when a commit message is received from
more than two-thirds of the nodes, a reply message is
sent to the client to indicate that consensus has been
successfully achieved.

Fig. 2: Consensus in PBFT

In [2], the authors present a theoretical analysis of
temporal variations in block communication among val-
idator nodes in Ethereum 2. The study models the pro-
cess of broadcasting a block from the node that generates
it to the other nodes, characterizing this process as a
Markov process where the probability of each node
receiving the block is considered. For a total of N nodes,
the resulting communication delay was confirmed to
follow O(N logN).

In [3], the authors propose RC-PBFT (Random Clus-
ter PBFT) and demonstrate its effectiveness, address-
ing the significant communication overhead inherent
in PBFT due to the extensive interactions between
nodes. Their approach involves creating clusters through
clustering, performing PBFT within randomly selected
clusters, and broadcasting the results to other clusters.
This method reduces the time required for consensus and
enhances throughput compared to conventional PBFT.

In [4], the authors address the issue of slow transac-
tion verification in Proof-of-Work (PoW) and propose
a method to reduce the verification time by utilizing
parallel mining both within and between clusters.

Fig. 3: Parallel Mining

As shown in Figure 3, the network comprises mining
nodes that perform mining and full nodes that distribute
blocks to other clusters. Mining begins simultaneously
across all clusters, and the mining node that discovers
a block sends it to the full node, which then forwards
it to the mining nodes within its own cluster as well
as to other full nodes. All full nodes that receive the
block broadcast it to their respective mining nodes
for verification. The experimental results indicate that
this approach reduces consensus time and enhances the
scalability of the network.

In [5], the authors express concern that while a
distributed network structure is anticipated to enhance
scalability and eliminate single points of failure in
networks comprising multiple robots, PBFT requires
extensive communication to achieve consensus. To ad-
dress this, they propose a method that groups robot
nodes into clusters using the k-means algorithm, aiming
to reduce consensus delays and energy consumption
between groups. Additionally, the behavior of nodes in

421

each cluster during the consensus process is monitored
and scored, with the node having the highest score
randomly selected as the primary node to enhance the
reliability of the primary node.

In [6], the authors provide a systematic and com-
prehensive review of blockchain sharding techniques,
identifying the key elements and challenges associated
with sharding. Sharding is a technique that divides nodes
into multiple groups (shards) to enhance the scalability
of a blockchain network, enabling each shard to process
transactions independently and thereby increasing the
overall processing capacity. This study analyzes in detail
the essential components of sharding implementation
and the challenges that may arise.

In [7], the study employs network coding, a technique
for efficient data transmission, in PBFT. The proposed
method aims to enhance scalability by reducing the max-
imum bandwidth requirement, demonstrating improved
communication efficiency and scalability compared to
conventional methods.

In [8], a solution is presented for enhancing the scal-
ability of blockchains through a three-layer architecture.
This approach aims to increase overall efficiency by uti-
lizing sharding and distributing processing tasks across
different layers. Meanwhile, [9] categorizes existing
sharding schemes based on blockchain type and sharding
technology, analyzing their respective advantages and
disadvantages. The study also establishes criteria for the
applicability of various sharding techniques.

III. PROPOSED METHOD

A. Overview
Following is the flow of the proposed method, as

illustrated in Figure 4.

1) Conduct PBFT across the entire network.
2) If consensus cannot be reached, apply the k-means

method to partition the network.
3) Conduct PBFT within each cluster.
4) Perform PBFT between clusters based on the

results obtained within each cluster.
5) If consensus is not achieved, it is determined that

there are many attackers in the cluster that sent
the minority opinion, leading to the merging of
the minority clusters.

6) If consensus is successfully formed, the process is
terminated.

Thus, the proposed method can estimate clusters with
a high concentration of attackers through clustering and
merge them to reduce the overall proportion of attacker
clusters. Consequently, the percentage of consensus
reached also increases. Additionally, the clustering using
the k-means method and the merging process must be
executed autonomously by the nodes, with results shared
among them. Therefore, there is a phase dedicated to
broadcasting geographical and other relevant informa-
tion.

Fig. 4: Proposed Method

Fig. 5: Clustering

The specific flow is illustrated in Figure 5. The circles
represent the nodes in the blockchain network. In this
figure, 6 out of 20 nodes are Byzantine nodes. Since
Byzantine nodes comprise more than one-third of the
total, it is impossible to achieve consensus even if PBFT
is executed in this scenario. Consequently, clustering is
performed, resulting in one cluster containing more than
one-third of Byzantine nodes, as indicated by the red
dotted line. In this case, when PBFT is conducted within
each cluster and between clusters, consensus is reached
in four out of the five clusters, indicating that consensus
can be correctly formed.

On the other hand, as shown in the left part of Figure
6, even when clustering is performed, consensus may
not be achievable if two clusters contain the majority
of Byzantine nodes, resulting in a situation where more
than one-third cannot reach agreement. However, by
merging the minority clusters (indicated by the red
dotted line), three normal clusters can be formed out
of the four clusters, allowing for successful consensus
formation.

In the proposed method, during the merging process,
clusters with a smaller average number of nodes are
combined until the minimum required number of clusters
for PBFT, which is four, is achieved. Table I illustrates
an example of how the number of nodes within clusters
changes, with the average number of nodes per cluster
denoted as n and the initial number of clusters repre-
sented by m.

422

Fig. 6: Merging clusters

No. of Merges No. of Nodes in Each Cluster No. of Clusters
0 n, n, . . . , n, n m
1 2n, . . . , n, n m− 1
2 2n, . . . , 2n m− 2
.

TABLE I: Number of Nodes within Clusters

B. Performance Limit
In this section, we present a theoretical analysis of the

probability of consensus formation and the upper bounds
on communication traffic when the proposed method is
applied.

variable name meaning
N Total number of nodes
m Number of clusters
n Number of nodes in cluster

TABLE II: variable

1) Probability of Consensus Formation: We analyze
the performance limits of the probability of consensus
formation. Assuming equal divisions, we use the vari-
ables defined in Table II to represent the total number
of nodes as follows:

N = mn (1)

The upper bound on the number of Byzantine nodes
f in a normal PBFT is given by:

N = mn = 3f + 1 (2)

Therefore,

f =
mn− 1

3
(3)

Also, the upper bound on the number of Byzantine
nodes fm in an m-equally divided two-stage PBFT is
as follows:

1) From m = 3f ′ + 1, all nodes can be Byzantine
nodes in f ′ clusters. Hence,

f ′ =
m− 1

3
(4)

2) For the remaining (2f ′ + 1) clusters, from n =
3f ′′ + 1,

f ′′ =
n− 1

3
(5)

nodes can be Byzantine nodes.

Therefore, from equations (4) and (5), we have:

fm = f ′ · n+ (2f ′ + 1) · f ′′

=
mn− 1

3
+

2

9
(m− 1)(n− 1)

= f +
2

9
(m− 1)(n− 1). (6)

This means that the proposed method increases the

upper limit of Byzantine nodes by
2

9
(m − 1)(n − 1)

compared to the conventional method.
Given that it increases by m ≈ n,

fm

N
=

5

9
− 4

9
· 1
n
− 1

9
· 1

n2
(7)

As N → ∞,

fm

N
→ 5

9
(8)

Consequently, from equation (8), if the number of

Byzantine nodes is less than
5

9
of the total number of

nodes, the proposed method may be used to reach a
consensus.

2) Amount of Communication Traffic: We also cal-
culate the communication complexity based on [10] for
communication traffic. Using the variables in Table II,
the amount of traffic associated with location informa-
tion sharing using the k-means method and consensus
building using PBFT is as follows:

N logN + 3(m logm+ n log n) (9)

When the merge is performed once, the number of
clusters is m−1, with the number of nodes in one cluster
being 2n and n for the remaining m−2 clusters. In this
case, the traffic generated will be:

3 {(2n) log (2n) + (m− 1) log (m− 1)} (10)

When the number of merges is
m

2
times, the number

of clusters is
m

2
, and the number of nodes in each cluster

is all 2n. Therefore, the amount of communication at this
time is:

3
{
(2n) log (2n) +

m

2
log

m

2

}
(11)

423

Item Condition
Number of nodes 90

Number of Byzantine nodes 0～90
Clustering method k-means
Number of clusters 7, 10, 15

Network topology
Barabasi-Albert (BA)

Erdos-Renyi (ER)
Watts-Strogatz (WS)

TABLE III: Simulation Conditions

Therefore, from equations (9), (10) and (11),

N logN + 3(m logm+ n log n)

+3 · m
2

· 2n log 2n+
∑m−1

i=m
2

i log i

= nm log nm+ 3n log n+ 3nm log 2n+
∑m−1

i=m
2

i log i

(12)

Here, in (12),

∑m−1

i=m
2

i log i ≃
∫ m

m
2

x log x dx

= O(m2 logm) (13)

Therefore, from (13), as m increases, the upper limit
of the communication volume increases by m2 logm.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the
proposed method through computer simulations. Based
on the following evaluation conditions, we compare the
proportion of consensus achieved and the amount of
communication traffic generated. For the probability of
consensus, we count the number of times consensus is
reached out of 100 executions.

A. Evaluation Conditions
Under the conditions outlined in Table III, we com-

pare the proposed method (Proposed Method k =
7, 10, 15) with conventional PBFT (Existing PBFT) and
PBFT with the k-means method applied only once
(Existing Method k = 7, 10, 15).

B. Consensus Probability
Figure 7 illustrates the probability of reaching con-

sensus in the BA, ER, and WS models as the number
of attackers varies from 0 to 90. In all models, the
proposed method successfully achieved consensus even
when the number of attackers exceeded one-third of the
total number of nodes. It is evident that the consensus
probability was higher in the proposed method compared
to the conventional method. This improvement can be
attributed to the aggregation of clusters with a high
number of attackers, which increased the proportion
of clusters that produced correct results. Furthermore,

Fig. 7: Consensus Probability

Fig. 8: Amount of Traffic

correct consensus was still attainable even with up to
approximately 50 attackers, representing more than 5/9
of the total participants. This outcome aligns with the
performance limits derived from the theoretical analysis,
confirming that the theoretical values are consistent with
the simulation results. However, it is noteworthy that
when the number of clusters is small (i.e., k = 7), the
performance limit is exceeded. This discrepancy arises
because the theoretical values derived in Section III-B1
are based on a single instance of clustering, while the
simulations involve multiple rounds of clustering and
merging, leading to surpassing the expected performance
limits.

C. Amount of Traffic
Figure 8 presents the amount of communication traf-

fic. In the proposed method, the traffic volume increased
compared to the conventional method due to the addi-
tional traffic generated by PBFT after clustering and the
necessity to broadcast data among nodes for executing
the k-means method. Moreover, when the number of
attackers exceeded one-third of the total nodes, the traffic

424

Fig. 9: Traffic Volume against the Number of Clusters

volume surged significantly as a result of clustering,
merging, and PBFT traffic within and between clusters.
Furthermore, as the number of clusters increased, the
frequency of merging also increased if consensus was
not reached, leading to a further rise in traffic volume
as the number of attackers escalated.

Figure 9 illustrates the amount of traffic for the BA,
ER, and WS models, with the number of nodes and
attackers set to 90 and 40, respectively. The theoretical
value O(m2 logm) for the traffic volume, derived in
Section III-B, is also plotted for comparison. To observe
the trends between the simulation results and theoretical
values, we added a constant to the theoretical values.
Notably, the lines for the BA and ER models overlap in
the graph. Furthermore, the jagged nature of the curves
can be attributed to situations where, in cases of an even
number of clusters, the number of supporting clusters
may equal the number of opposing ones. This can lead
to instances where consensus is not achieved, resulting
in a lower probability of consensus formation compared
to cases with an odd number of clusters.

In all models, the amount of traffic increased with the
number of clusters. Additionally, the observed increase
in traffic volume aligned closely with the theoretical
value, confirming the robustness of the theoretical anal-
ysis presented in Section III-B. Since the theoretical
values serve as approximations in terms of order of
magnitude, the trends observed in both the theoretical
and simulation results were found to be consistent.

V. CONCLUSION

In this paper, we proposed a method to enhance re-
sistance against Byzantine attacks by utilizing clustering
and merging techniques. We compared the percentage of
consensus formation and the amount of communication
traffic between the proposed method and conventional
approaches. Through simulation evaluations, we con-
firmed the following key findings:

• By applying the proposed method, it became pos-
sible to reach correct consensus even when more

than one-third of the participants were attackers.
• The proposed method enabled correct consensus to

be reached even with up to 5/9 of the participants
being attackers, which aligns with the performance
limit of consensus probability derived through the-
oretical analysis.

• The amount of traffic increased considerably com-
pared to conventional methods due to the rise in the
number of communications and the volume of data
exchanged. Additionally, as the number of attackers
increased, the interactions with other clusters also
escalated, leading to higher traffic.

• As the number of clusters increased, the traffic
volume also grew. We derived the theoretical upper
limit of the communication overhead generated
by the proposed method, and by comparing it to
the simulation results―after adding a constant―
we confirmed that both exhibit a similar increasing
trend.

In the future, we plan to devise a method to reduce
the amount of traffic while maintaining the probability
of consensus.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant
Number 23K11086, 23K21664, and 23K28078.

REFERENCES

[1] M. Castro, et al., “ Practical byzantine fault tolerance,” in
Proc. of third symposium on Operating systems design and
implementation (OSDI ’99), 1999, pp. 173-186.

[2] A. Fujihara, “ Explaining temporal fluctuations of broadcast
communications between validator nodes in a proof-of-stake
blockchain,” in Proc. of the Proceedings of Blockchain Kaigi
(BCK23), 2023, pp. 011004-1–011004-11.

[3] R. M. Othmen, et al.,“ Simulation of Optimized Cluster Based
PBFT Blockchain Validation Process,” in Proc. of the IEEE
Symposium on Computers and Communications (ISCC), 2023,
pp. 1317-1322.

[4] A. J. Al-Musharaf, et al.,“ Improving Blockchain Consensus
Mechanism via Network Clusters,” in Proc. of the 2021 1st
Babylon International Conference on Information Technology
and Science (BICITS), 2021, pp. 293-298.

[5] Y. Sun, Y. Fun,“ Improved PBFT Algorithm Based on K-means
clustering for Emergency Scenario Swarm Robotic Systems,”
IEEE Access, 2023, pp. 121753-121765.

[6] G. Wang, et al.,“ SoK: Sharding on Blockchain,” in Proc. of
the 1st ACM Conference on Advances in Financial Technologies
(AFT ’19). Association for Computing Machinery, 2019, pp. 41-
61.

[7] B. Choi, et al., “ Scalable Network-Coded PBFT Consensus
Algorithm,”in Proc. of the 2019 IEEE International Symposium
on Information Theory (ISIT), 2019, pp. 857-861.

[8] J. Xi, et al., “ A Comprehensive Survey on Sharding in
Blockchains,”Mobile Information Systems, 2021.

[9] X. Liu, et al., “ A survey on blockchain sharding,” ISA
Transactions, 2023, pp. 30-43.

[10] A. Fujihara,“Theoretical Analysis on Block Time Distributions
in Byzantine Fault-Tolerant Consensus Blockchains,” in Proc.
of the IEEE International Conference on Blockchain, 2024, pp.
378-385.

425

