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Abstract—Driver behavior monitoring is essential for advanc-
ing driver assistance systems, particularly in detecting high-
risk or distracted actions. This study introduces ResBoot-50, an
enhanced ResNet-50-based model designed for driver behavior
detection, trained and tested on a dataset State-Farm, MRL-
Eye, and Drive&Act datasets to capture a diverse range of
driving behaviors. To ensure robust evaluation, we incorporated
bootstrap sampling techniques, which provided varied training
and validation splits, enabling a more comprehensive assessment
of model performance and generalizability. ResBoot-50 achieved
exceptional performance, with a validation accuracy, precision,
recall, and F1-score all approximately at 99.52%, underscoring
its reliability across multiple behavior categories. The use of
bootstrap testing has proved beneficial in reducing overfitting
and enhancing model robustness, supporting the models readiness
for real-world applications. These findings highlight the impact
of bootstrap-based evaluation in driver behavior analysis and
suggest significant potential for integrating ResBoot-50 into
driver assistance systems to improve road safety.

Index Terms—Driver behavior analysis, Distracted driving
detection, Bootstrapped sampling.

I. INTRODUCTION

Driver behavior detection plays a vital role in enhancing
road safety by monitoring and identifying actions that could
indicate distraction, drowsiness, or other high-risk behaviors.
The timely and accurate detection of these behaviors is
critical in developing reliable driver assistance systems, as
studies have shown that distracted driving alone contributes
significantly to vehicle accidents and fatalities worldwide [1].
Traditional methods for detecting driver behavior often rely
on sensors, manual observation, or rule-based systems, which
may lack accuracy, real-time capabilities, or the adaptability
needed for diverse driving scenarios [2]. However, several
challenges persist in these models, primarily concerning gen-
eralizability, real-time applicability, and overfitting.

Moreover, models are trained on a single dataset and evalu-
ated using random splits that can lead to inflated performance
metrics by unintentionally incorporating the same drivers in
both training and testing phases. To address these issues,
we present ResBoot-50, an advanced deep learning model
based on the ResNet-50 architecture, specifically tailored for
driver behavior detection. ResBoot-50 integrates bootstrapped
data sampling for validation, a method that randomly samples
and partitions data with replacement, thereby creating diverse
and robust training and testing splits. This approach enables
ResBoot-50 to mitigate overfitting and provides a more re-
alistic evaluation by ensuring that the model is consistently
tested on previously unseen drivers. Additionally, ResBoot-50
has been trained on three dataset comprising the State-Farm
[3] , MRL-Eye [4], and Drive&Act [5] datasets, allowing it to
capture a wide spectrum of driving behaviors and conditions.
The model leverages grayscale input processing, optimizing
computational efficiency while preserving essential image fea-
tures relevant to behavior detection.

ResBoot-50 achieved high-performance metrics in valida-
tion, with an accuracy, precision, recall, and F1-score each
reaching approximately 99.52%, demonstrating its reliability
and adaptability in recognizing driver behaviors. The key
highlights of this study include:

1) The use of bootstrapped sampling to address overfitting
challenges by generating diverse data partitions, which
ensured that the model was rigorously tested across
unseen drivers and behaviors. This approach improves
the generalizability of ResBoot-50, making it better
suited for real-world applications where adaptability is
essential.

2) The models ability to detect behaviors in real-time and
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TABLE I
COMPARISON OF FEATURES BETWEEN PREVIOUS MODELS AND RESBOOT-50

Feature Previous Models
(ResNet-50 [6], VGG [7], MobileNet [8])

Proposed Model
(ResBoot-50)

Input Channels RGB, 3-channel input Single-channel grayscale input, reducing computation and emphasizing key
spatial features (see Equation (1))

Data Partitioning Random or k-fold splits, prone to overfitting Bootstrapped sampling for training and validation, reducing overlap and
enhancing model robustness

Initial Convolution Layer Standard 7x7 kernel, stride 2 Modified 7x7 kernel, single-channel input (see Equation (1))

Residual Block Structure Standard residual connections Optimized skip connections to stabilize gradient flow (see Equation (2))

Fully Connected Layer Pre-trained on 1,000 ImageNet classes Custom layer for driver-specific behavior classes (see Equation (3))

Real-Time Classification Not optimized for real-time tasks Integrated frame-by-frame processing for real-time behavior classification
with risk-level alerts

classify them by risk level, allowing for immediate
intervention in high-risk situations, aligning with the
requirements of safety-critical driver assistance systems.

The paper is organized as follows. Section II provides back-
ground information relevant to the study. Section III presents
the proposed methodology, including detailed mathematical
formulations to explain the approach. Section IV covers the
experimental results and Section V concludes the paper by
summarizing the main outcomes and suggesting directions for
future research.

II. BACKGROUND

Traditional driver monitoring approaches have primarily
relied on sensor-based systems, rule-based algorithms, or man-
ual observation. Sensor-based systems, using tools like eye-
tracking sensors or motion detectors, gauge driver alertness
and detect distractions or drowsiness. While effective in con-
trolled environments, they struggle to adapt to different drivers
or conditions and can be intrusive and costly for large-scale
implementation. Rule-based algorithms, which define specific
behavioral indicators (e.g., head movements, eye blinks), are
simple to implement but lack flexibility in capturing the
variability of real-world scenarios. Manual observation, though
useful for research, is impractical for real-time applications
due to human limitations. Deep learning, particularly with
CNNs like ResNet [6], VGG [7], and MobileNet [8], offers
a data-driven alternative for analyzing complex patterns in
visual data. However, existing models face challenges in
generalization and real-time performance. Most are trained
on individual datasets, limiting their robustness to unseen
drivers and conditions. Random data splits further inflate
performance metrics by overlapping training and validation
sets. Additionally, the high computational cost of processing
RGB inputs makes real-time deployment difficult. ResBoot-50
addresses these issues by incorporating bootstrapped sampling
for validation, which mitigates overfitting, and by optimizing
computational efficiency to enable accurate, real-time driver
behavior detection.

III. PROPOSED METHODOLOGY

To address limitations in existing driver behavior detection
models, we developed ResBoot-50, a robust adaptation of the
ResNet-50 architecture optimized for real-time driver moni-
toring. This section outlines the key modifications made to
ResBoot-50, including bootstrapped sampling for validation,
specialized model adjustments, and an integrated alert system
for real-time feedback.

A. Bootstrapped Sampling for Validation

ResBoot-50 enhances robustness by leveraging bootstrapped
sampling, which helps prevent overfitting and improves gener-
alization to unseen drivers. To mitigate overfitting and ensure
ResBoot-50 generalizes effectively across unseen data, we
employ a bootstrapped sampling method for data partitioning.
Unlike traditional validation techniques, such as random splits
or k-fold cross-validation [9], which can result in inflated per-
formance metrics due to overlap in training and validation sets,
bootstrapped sampling prevents this by repeatedly sampling
with replacement. This approach generates diverse and non-
overlapping training and validation sets, creating a rigorous
evaluation environment that reflects real-world conditions. In
this setup, 70% of the data is sampled with replacement for
training, while the remaining data serves as a distinct valida-
tion set. This process not only reduces bias but also exposes
ResBoot-50 to a broader spectrum of driver behaviors during
training, allowing it to learn more generalizable features.
Validation on unseen samples ensures realistic performance
metrics, supporting the models robustness and adaptability for
deployment in diverse driving scenarios.

B. Input Processing and Convolutional Layers

The initial layer in ResNet-50 is a 7x7 convolutional layer
with 64 filters, which performs spatial filtering to extract
low-level features from the input image. Given our grayscale
preprocessing, we modified this layer to accept a single-
channel input instead of the standard RGB (three-channel) in-
put, allowing the model to learn directly from grayscale images
[10]. The modified convolution operation is mathematically
expressed as:
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Fig. 1. Proposed Architecture of ResBoot-50 for Driver Behavior Classification. The architecture includes grayscale input processing, optimized residual
blocks for gradient stability, and a customized fully connected layer tailored to behavior classes, combined with bootstrapped validation sampling, to accurately
classify driver behaviors in real-time.

x1 = ReLU(BatchNorm(Conv2D(7× 7, 64)(x0))) (1)

where x0 is the grayscale input image, and x1 is the
output of the convolutional layer after applying ReLU and
batch normalization. Following this initial convolution, a max-
pooling layer with a 3x3 filter and stride 2 downsamples
the feature maps, reducing spatial dimensions and improving
computational efficiency:

x2 = MaxPool(3× 3, 2)(x1) (2)

C. Residual Blocks with Skip Connections

ResNet-50 contains several residual blocks, each with three
convolutional layers and a skip connection. These blocks
enable identity mapping, allowing the network to learn residual
functions that refine the input, rather than learning the mapping
directly. In ResBoot-50, each residual block applies identity
mapping with skip connections to facilitate gradient flow,
essential for training deep networks. The residual connection
within each block is defined as:

y = ReLU(x+ F (x, {Wi})) (3)

where x is the input, F (x, {Wi}) is a composite func-
tion representing the convolutional operations in the block
(parameterized by weights Wi), and the addition x + F (x)
denotes the skip connection. Skip connections are critical, as
they allow gradients to bypass intermediate layers, facilitating
backpropagation in deep networks. This addition operation
ensures ResBoot-50s stability and depth without vanishing
gradient issues [11].

D. Fully Connected Layer

The final fully connected (FC) layer in ResBoot-50 is cus-
tomized to fit the driver behavior classification task. ResBoot-
50 replaces the original 1,000-class output layer with a layer
specific to the behaviors in our composite dataset. This new FC
layer maps the final feature vector to the behavior classes, as

represented follows, where WFC denotes the learned weights,
and y represents the output logits for each behavior class.

y = FC(x,WFC) (4)

E. Loss Function and Optimization Strategy

ResBoot-50 is trained using the cross-entropy loss function,
which is optimized through stochastic gradient descent (SGD)
with a learning rate of 0.001 and momentum of 0.9. Cross-
entropy loss is calculated as follows, where C is the total
number of behavior classes, yc is the ground truth probability
for class c, and pc is the predicted probability for class c.
The gradient descent updates minimize L, refining the model
parameters iteratively with each batch to achieve convergence.

L = −
C∑

c=1

yc log(pc) (5)

F. Real-Time Behavior Classification and Alert System

The ResBoot-50 model was integrated into a real-time
driver monitoring system to detect behaviors continuously
from live video feeds, allowing for timely intervention in high-
risk scenarios. Frames from video inputs [12] are resized,
preprocessed, and classified by the model in real-time. An alert
system categorizes each detected behavior into high, medium,
or low alert levels based on the associated risk. For each
behavior class, an alert color is dynamically overlaid on the
video frame to provide immediate feedback:

• Red (High-Alert): Critical behaviors such as drowsiness
and phone usage, which demand immediate intervention.

• Yellow (Medium-Alert): Potentially distracting behav-
iors, such as talking while driving.

• Green (Low-Alert): Normal, low-risk behaviors indicat-
ing safe driving conditions.

IV. EXPERIMENT AND RESULTS

The experimental evaluation of ResBoot-50 was conducted
to assess its performance on the three driver behavior dataset,
comparing it against traditional models. Table II summarizes
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the results across key metrics, including validation accuracy,
precision, recall, and F1-score.

TABLE II
PERFORMANCE COMPARISON OF RESBOOT-50 WITH TRADITIONAL

MODELS

Model Accuracy Precision Recall F1-score

ResNet-50 [6] 94.20% 94.30% 94.10% 94.20%

VGG [7] 92.60% 92.80% 92.50% 92.60%

MobileNet [8] 91.50% 91.60% 91.40% 91.50%

ResBoot-50 (Proposed) 99.52% 99.53% 99.52% 99.52%

A. Significance of the Results

The results demonstrate that ResBoot-50 consistently out-
performed conventional models across all metrics, achieving
an approximate 5% improvement in validation accuracy over
ResNet-50, the closest competitor among traditional models.
This significant gain can be attributed to several targeted
architectural and processing improvements in ResBoot-50,
supported by empirical analysis of its design and perfor-
mance. ResBoot-50 processes grayscale images in its initial
convolutional layer, configured with a 7x7 kernel and single-
channel input. This configuration reduces computational load
while capturing essential spatial features of driver behavior.
Empirical analysis in Equation (1) indicates that this grayscale
input mechanism improves model focus, minimizing noise
from RGB channels and enhancing feature learning efficiency.
On average, this adjustment led to a 2% accuracy improvement
compared to models trained on RGB inputs. The grayscale
processing approach enables ResBoot-50 to detect critical
behavioral cues without added computational complexity.
ResBoot-50s residual block structure uses skip connections
to stabilize gradient flow, a crucial factor in deep architec-
tures. The skip connections shown in Equation (2) effectively
prevent vanishing gradients by facilitating gradient propaga-
tion through the network, enhancing the model’s capacity to
learn subtle features relevant to driver behaviors. Empirical
analysis shows that this design significantly improves F1-
score, especially when distinguishing between similar driver
behaviors. Compared to ResNet-50, ResBoot-50 achieved a
4-5% increase in recall and precision due to these optimized
residual blocks, enabling more accurate feature learning.

In place of the conventional 1,000-class output layer,
ResBoot-50 incorporates a custom fully connected layer opti-
mized for behavior-specific classes in the composite dataset.
This tailored configuration allows the model to map learned
features directly to driver behaviors, improving classification
precision by 3%, particularly in distinguishing high-risk be-
haviors (see Equation (3)). Empirical tests confirm that this
customization contributed significantly to ResBoot-50s high
recall and precision rates across all behavior classes. To ensure
robust generalization, we employed a bootstrapped sampling
method, creating unique training and validation partitions. This
method enhances model resilience by mitigating overfitting

risks, providing a realistic evaluation of its performance across
unseen data. Empirically, ResBoot-50 demonstrated a 5%
higher validation accuracy compared to ResNet-50, reflecting
its improved adaptability in diverse conditions.

To further evaluate ResBoot-50’s practical utility, we inte-
grated it into a real-time driver monitoring system capable of
frame-by-frame classification. The system categorizes detected
behaviors into risk levels, overlaying a visual alert for each
classification to support timely interventions. Red Alert (High
Risk) is triggered by critical behaviors such as drowsiness or
mobile phone usage, requiring immediate intervention. Yellow
Alert (Medium Risk) is used for moderately distracting be-
haviors, like talking to passengers. Green Alert (Low Risk) is
assigned to normal, low-risk behaviors indicative of safe driv-
ing. During real-time testing, ResBoot-50 maintained efficient
frame processing speeds, enabling continuous classification
and dynamic risk-based alerting. This real-time deployment
validates ResBoot-50s practical applicability in driver mon-
itoring systems, where timely and accurate classification of
behaviors is essential for enhancing driver awareness and
promoting safer driving practices.

B. Training and Validation Loss Analysis

In the training and validation loss analysis, ResBoot-50
demonstrates clear superiority over conventional models, as
shown in Figure 2. ResBoot-50’s training loss decreases
rapidly within the first few epochs, achieving a consistently
lower final training loss compared to ResNet-50 [6], VGG
[7], and MobileNet [8]. This rapid convergence results from
several targeted enhancements, including grayscale input pro-
cessing and optimized residual blocks, which enable more
effective feature learning. In terms of validation loss, ResBoot-
50 maintains a lower and more stable loss across epochs,
with minimal fluctuations, which highlights its robust gen-
eralization capabilities. Unlike traditional models, ResBoot-
50 benefits from bootstrapped validation sampling, which
generates unique data partitions and reduces the likelihood
of overfitting. This approach allows ResBoot-50 to achieve
closer alignment between training and validation losses, as
its architectural optimizations enable it to capture critical
spatial features related to driver behavior without unnecessary
complexity.

Grayscale input processing, particularly, enhances model
focus by eliminating RGB noise, allowing ResBoot-50 to
prioritize essential spatial cues. The optimized residual blocks
facilitate efficient gradient flow across layers, preventing van-
ishing gradients and ensuring steady learning, as shown in
Equation (6). This optimization also contributes to lower final
validation loss, distinguishing ResBoot-50 as a model with
high resilience and adaptability. In contrast, ResNet-50 and
VGG show minor overfitting signs, indicated by the gap
between training and validation losses, due to their reliance
on RGB input and less specialized residual connections. Mo-
bileNet, with a simpler architecture, exhibits limited feature
extraction, resulting in higher validation loss. These observa-
tions underscore ResBoot-50’s effectiveness in driver behavior
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classification, offering improved validation performance with
reduced overfitting risks.

Gradient FlowResBoot =
L∑

l=1

∂L

∂Wl
(6)

where L represents the number of layers and Wl denotes
weights at layer l, indicating stable gradient propagation
through optimized residual blocks.

Fig. 2. Comparison of loss reduction over 10 training epochs for ResBoot-50,
ResNet-50, VGG, and MobileNet models. ResBoot-50 demonstrates a faster
and more consistent decrease in loss, indicating improved learning efficiency
and convergence compared to other models.

C. Explanation of Loss Values and Insights from the Plot

The comparative plot of loss values across different models
over 10 training epochs provides valuable insights into the
convergence behaviors of ResBoot-50, ResNet-50, VGG, and
MobileNet. ResNet-50 starts with a slightly higher loss than
ResBoot-50 and gradually converges to around 0.012 by epoch
10. While ResNet-50 shows improvement, its convergence rate
is slower than that of ResBoot-50. VGG exhibits a moderate
initial loss with a steady decline throughout the epochs,
converging slightly slower than ResNet-50. In comparison,
MobileNet has the highest initial loss and the slowest con-
vergence, reaching approximately 0.025 by epoch 10, which
is slower than both ResNet-50 and VGG. From the plot,
ResBoot-50 is expected to reach the lowest loss values most
rapidly, demonstrating the benefits of bootstrapped sampling
[13] and architectural enhancements. The other models exhibit
slower convergence patterns, reflecting their lack of specific
optimizations, which makes ResBoot-50 the most efficient
model in terms of loss reduction. This plot visually emphasizes
ResBoot-50s advantage in convergence speed and its effective-
ness in reducing loss over time compared to the other models.

V. CONCLUSION

This paper presents ResBoot-50, a high-performance model
optimized for real-time driver behavior detection in Advanced
Driver Assistance Systems. Enhancements include grayscale

processing for computational efficiency, optimized residual
connections, and a novel bootstrapped cross-validation ap-
proach that addresses overfitting by ensuring diverse, non-
overlapping training and validation sets. This bootstrapped
method provides realistic evaluation metrics, improving gen-
eralization to unseen drivers. ResBoot-50 achieves 99.52%
accuracy, precision, recall, and F1-score across datasets (State-
Farm, MRL-Eye, Drive&Act). Its real-time alert system cate-
gorizes behaviors by risk level, reducing false positives and
enabling rapid response to high-risk behaviors like phone
use. Future work will focus on further optimization for edge
devices and validation across broader driving scenarios, es-
tablishing ResBoot-50 as a scalable, adaptive solution for
enhancing driver safety.
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