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Abstract—Prediction-based Dynamic Spectrum Access (DSA)
in Cognitive Radio (CR) is a promising approach for efficient fre-
quency spectrum utilisation for fast and reliable next generation
of wireless communication. This led us to meticulously examine
the relation of spectrum occupancy characteristics on prediction
performance to accurately predict spectral opportunities in a
dynamic radio environment. Our research involves utilising a
Long-Short-Term Memory (LSTM)-based deep learning model
to predict binary spectrum occupancy, which is characterised by
the discrete-time Markov process. The LSTM prediction error
is analysed and modelled using a Thin-Plate Spline (TPS) model
for arbitrary binary Markovian model parameters. The proposed
TPS model for prediction error is presented here along with the
model verification results, which show a clear correlation between
prediction performance and channel occupancy patterns and
gives superior accuracy for conveniently computing the prediction
error under the proposed settings.

Index Terms—Error modeling, Markovian spectrum occu-
pancy, prediction error, spectrum occupancy prediction, TPS

I. INTRODUCTION

Pursuing larger capacity and higher reliability have always
been critical objectives as we progress through the evolution
of wireless systems. As wireless networks approach the sixth
generation (6G) through the fifth generation (5G), the world
of communication is becoming more concerned with artificial
intelligence (AI) solutions, and is about to undergo signif-
icant improvements with AI applications [1]. The dynamic
wireless environment is poised to see crucial involvement
from several important ideas, such as Cognitive Radio (CR),
Dynamic Spectrum Access (DSA), and spectrum utilization.
CR and DSA, in particular, represents a paradigm shift in
wireless communication systems, with its primary goal being
to enhance the utilization of the radio frequency spectrum [2].

Prediction-based DSA has being deployed to mitigate the
shortfalls of fundamental cognitive radio spectrum manage-
ment and improve spectrum efficiency, reduce energy con-
sumption, and reduce the latency of dynamic spectrum access
[2],[3],[4]. Spectrum prediction is employed to predict the
future status of the channel in advance and allows secondary
users to have seamless handovers in cognitive radio networks.
There are different models such as auto-regressive, Markov,
Bayesian network, and Deep Learning (DL) that can be used
for spectrum prediction in cognitive radio [2]. These models
can capture the temporal, spectral and spatial dynamics of
spectrum occupancy and provide probabilistic or deterministic
predictions of future spectrum availability. DL is a popular AI

tool due to the capacity to learn the complex and nonlinear
features of the spectrum environment from the observed data
with the architecture based on Artificial Neural Networks
(ANN) [2]. Researchers have shown keen interest in the com-
putational prowess and accuracy of DL models for spectrum
prediction [3] and their ability to effectively adapt to complex
environments [5].

Deep Neural Network [5], Convolutional Neural Network
(CNN) [6], Long-Short-Term Memory (LSTM)[5] and Recur-
rent Neural Network (RNN) [7], are popular DL approaches
used in spectrum prediction. Neural networks consist of an
input layer, an output layer, and intermediate hidden layers
comprised of artificial neurons. RNN is well known for
addressing time series with dependencies thanks to its rapid
convergence and ability to manage complex nonlinear data
using the feedback architecture of recurrent cell [8]. LSTM is
an optimized version of the RNN network with the ability to
handle time series with dependencies due to its RNN features
and improved capabilities, including ease of training, memory
cells, and long-term dependencies [9].

The accuracy of spectrum occupancy prediction results re-
lies, in part, on the predictive model used. A model can be se-
lected based on the performance compared to other prediction
models [1],[5], or the structure and hyper-parameter selections
of the prediction models for specific application [10],[11],[12].
The accuracy of predictions is significantly influenced by
the input spectrum data, making it crucial to assess how
well the prediction model aligns with the intended Cognitive
Radio (CR) environment [5],[1]. Predicting spectrum occu-
pancy has been investigated recently for various occupancy
models using different prediction techniques [9],[12],[13]. It is
desirable to theoretically quantify the prediction performance
for predicting the spectrum occupancy using machine learning
methods for various parametric settings, and this will allow the
wireless system engineers to schedule wireless transmissions
better in a spectrally crowded environment using dynamic
spectrum scheduling. Especially in a dynamic environment
with time-varying parameters, it is important to have a the-
oretical/computational model to estimate the performance of
spectrum prediction.

In this letter, we model the error performance for predict-
ing the binary channel states of spectrum occupancy using
LSTM-based classification, considering a discrete two-state
Markov based spectrum occupancy model for arbitrary state
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transition probabilities. Our previous work on prediction er-
ror modelling was limited to the particular case where the
transition probabilities were the same for the two states [14],
and in this paper, we present it for any arbitrary values
of state-transition probabilities. Non-parametric regression is
preferred over parametric methods for error modeling due to
the complex relationship between transition probabilities and
error performance [15],[16]. Additionally, it avoids forcing
the data into predefined base functions or models. After
assessing parametric and non-parametric models, Thin-Plate
Spline (TPS) was found to be the best fit. The TPS regression
is a well established non-parametric regression method that
provides a straightforward and effective regression [15]. Con-
sequently, the performance model presented here is based on a
TPS interpolation that offers a closed-form series expression
and model coefficients. The model was further tested with
additional data for validation. To the authors’ knowledge, such
a prediction error performance model has not been presented
in the literature to date.

In the remainder of the paper, we present the system model
for prediction in Section-II, the Thin-Plate Spline modeling
in Section-III together with the verification of the proposed
model in Section-IV. Finally, the Section V concludes the
paper.

II. SYSTEM MODEL
The LSTM-based prediction model is presented in this

section. The spectrum occupancy is modelled using a discrete
two-state Markov process and the binary spectrum occupancy
prediction is performed using an LSTM-based classification
model that predicts the channel status with a single step ahead.

A. Spectrum Occupancy Model
We consider a single discrete time channel with binary

occupancy level X(n), where the binary states of X(n) are
modelled by a stationary discrete time Markov process [17],
as defined below,

Fig. 1. State transition diagram.

X(n) =

{
0 ; Idle
1 ; Busy

(1)

The initial state is Idle, and the transition probability matrix
PT is defined as,

PT =

[
α 1− α
1− β β

]
(2)

where,
α = Pr[X(n+ 1) = 0|X(n) = 0] (3)

β = Pr[X(n+ 1) = 1|X(n) = 1] (4)

The steady state probabilities are,

P (X(n) = 0) =
1− β

2− (α+ β)
(5)

P (X(n) = 1) =
1− α

2− (α+ β)
(6)

B. LSTM Model for Temporal Spectrum Prediction

The LSTM-based deep learning model [14] considered for
classification and prediction in this work consists of five layers,
including the sequence input layer, LSTM layer, fully con-
nected layer, softmax activation layer and classification layer,
as depicted in Fig.2. The data series for channel occupancy,
which was acquired through the model described in Section
II-A, was utilized to train the proposed LSTM model.

The Markov input data sequence, X(n) with N time steps
is reshaped into a (N − 1)× 2 matrix using a sliding window
approach to prepare data for the sequence input layer with
an input size of two. Every row of the reshaped matrix is an
input containing the current and previous spectrum occupancy
states, [X(n − 1), X(n)]. The sequence input layer converts
the input sequence into a compatible vector for the next layer.

Fig. 2. LSTM-based prediction model.

The LSTM layer, composed of gated units of three sigmoid
gates and a tanh layer, performs the spectrum prediction’s
central computational part. The number of hidden units or the
gated units selection determines the capacity of the LSTM
layer to extract and process more features of the input data.
Similarly, more hidden units may cause overfitting and impact
the computational speed. One hidden unit has been configured
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in this particular model. The output of the LSTM layer is
forwarded to the fully connected layer.

The result from the fully connected layer is then passed
through the softmax layer, which converts raw scores into
meaningful probabilities, denoted as q and 1−q, for the labels
"idle" and "busy," respectively. The array of softmax output
is,

V (n) = [q, 1− q]; 0 ≤ q, 1− q ≤ 1 (7)

During training and validation, the classification layer cal-
culates the cross-entropy loss between the actual label and
predicted probabilities resulting from the softmax layer. Dur-
ing the prediction, the prediction output Y (n), which is the
predicted channel state for X(n + 1), is classified by the
classification layer according to the (8),

Y (n) =

{
0 ; q > 1− q

1 ; q < 1− q
(8)

C. Probability of Prediction Error

The prediction error occurs when the predicted state does
not match with the corresponding actual state of the chan-
nel, and the probability of prediction error Pe is given by
Pr[Y (n) ̸= X(n+ 1)] , which can be written as,

Pe = Pr[Y (n) = 0|X(n+ 1) = 1]Pr[X(n+ 1) = 1]

+Pr[Y (n) = 1|X(n+ 1) = 0]Pr[X(n+ 1) = 0]
(9)

Based on the above expression, Pe becomes a surface curve
when observed with respect to the transition probabilities α
and β. In this work we model Pe as a function of α and β
using a TPS based surface fitting model, as described in the
next section.

III. MODELING THE PROBABILITY OF ERROR WITH TPS
REGRESSION METHOD

The Thin Plate Spline regression is a known mathematical
technique to interpolate and smooth grid data to fit a surface
[18], This non-parametric regression method allows to obtain a
straight forward mathematical representation of the dataset and
assigns weights to each data point [19]. The LSTM prediction
error probability Pe becomes a surface curve when observed
as a function of the two transition probabilities α and β.
Upon obtaining sample data points for Pe from computer
simulations across arbitrary set of α and β values, Multivariate
TPS regression can be utilized for surface fitting.

The basic concept of TPS is as follows. Residual sum
of squared (RSS) (10) represent the goodness of fit of TPS
function.

RSS =

M∑
i=1

(
Pe(ci))− P e(ci)

)2
(10)

M is the number of modeling data points and i=1,2,..M. ci
denotes the (α, β) coordinates of ith data point. P e(ci) is the
model expression representing prediction error obtained from

the regression analysis and Pe(ci) is the actual prediction error
at the ith data point.

Smoothness of the curve fitting is calculated by the Inte-
grated Squared Second Derivative (ISSD) of the smoothing
spline (11).

ISSD = λ

∫∫

R2

(
∂2P e(c)

∂α2

)2

+2

(
∂2P e(c)

∂α∂β

)2

+

(
∂2P e(c)

∂β2

)2

dαdβ.

(11)

λ is the Smoothing parameter and, λ > 0. Cross-validation
score quantifies smoothing parameter in TPS model[18]

TPS estimates a smoothing spline function P e(c) that
efficiently minimizes the Penalized Sum of Square(PSS) in
(12) by not precisely interpolating all the input data points
but rather by using a smoothing approach [20],[19].

PSS = RSS + ISSD (12)

Then, P e(c) is defined to be in the form of (13) [18],

P e(c) =

K∑
k=1

bkQk(c) +

M∑
i=1

wiU(ri) (13)

Satisfying,
NTw = 0 (14)

Where, K is the number of linear terms in the equation and
K = 3. The function Qk represents the independent variables
of the surface curve (Pe) such that Q0(c) = 1, Q1(c)=α and
Q2(c)=β. bk and wi are model coefficients. w is a M×1 matrix
of wi coefficients. N is a M×K matrix where each row of N
is, Ni = [1 αi βi]. The terms rij and U(r) are respectively
given by,

ri = ||c− ci|| = ||(α, β)− (α, β)i|| (15)

U(ri) = r2i ln(r
2
i ) (16)

The coefficients bk and wi in (13) are known as the model
parameters obtained by solving matrix form of (13) and (14)
for the given data set. The key objective of the TPS modeling
is to obtain the model parameters that would fully define the
mathematical representation of Pe allowing regression for any
arbitrary values of α and β. This regression model generates
a total of M +K coefficients to mathematically describe Pe,
with M coefficients for the nonlinear terms and K coefficients
for linear polynomial terms.

A. Accuracy of Model

The accuracy of the model can be defined by calculating
the residual ξ between the true (Pe) and model (P e) values
during the validation process using computer simulations, the
residual at a particular input data point (αi, βj) is given by,

ξij = P e (αi, βj)− Pe(αi, βj) (17)
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Where, Pe is computationally obtained from the simulations
and P e is obtained from (13). Once the residual error is ob-
tained from (17), we compute the root mean squared error, σξ

probability density function, fξ and the cumulative distribution
function, Fξ to present the accuracy of the developed model.

IV. MODEL DEVELOPMENT AND SIMULATION RESULTS

The study involves transition probabilities of Idle and busy
states ranging from 0.1 to 0.9 in increments of 0.1 creating
different channel occupancy scenarios. For each α and β
pair, The same LSTM model was trained using the modeled
spectrum usage of 10,000 time steps with initial learner rate
at 0.05 and piece-wise learning rate schedule. Number of
maximum epochs was set as 50. The trained LSTM model
forecasts spectrum occupancy across 10,000 time steps for
each input pattern. This prediction is repeated 1,000 times for
robust and reliable results, and the average result is computed.

Graphs in Fig.3 illustrate the variation in prediction error
for each α and β pair. The line graphs depict the Pe for a
specific β, showing an increase in Pe even when a single
state reaches random transitions. The highest prediction error
is noted when both α and β equal 0.5, indicating a state
of absolute randomness and minimal predictability. Those
plots prove that the prediction model does not perform at the
same level of prediction results for each channel occupancy
condition.

Further, these prediction results show a sensitivity to the
transition probabilities despite the long-term channel occu-
pancy described by steady state probabilities. The plot in
Fig.4, where α = β, illustrates Pe’s variation across differ-
ent state transition probabilities, assuming equal steady-state
probabilities for channel states. This confirms that α and β
impact Pe regardless of steady-state probabilities, affirming
Pe’s dependency on α and β, and enabling its formulation as
a function of α and β.

Fig. 3. LSTM prediction error vs transition probabilities.

Fig. 4. LSTM prediction error vs equal transition probabilities.

TABLE I
INTERPOLATION MODELS COMPARISON

Interpolation Method Number of coefficients
in CFMR

Validation
σξ

Nearest Neighbour No CFMR 0.0423
Linear No CFMR 0.0151

Cubic spline 1024 0.0134
Support vector regression 82 0.0487

Gaussian process regression No CFMR 0.0161
TPS 84 0.0136

A. TPS Model Development

Table I presents a comparative analysis of TPS inter-
polation and other prevalent models from the literature
[15],[16],[19] and practice. While cubic spline interpolation
exhibits marginally superior accuracy compared to TPS, the
Closed Form Mathematical Representation (CFMR) of TPS
with 84 coefficients is notably less complex than the Cubic
spline interpolation with 1024 coefficients. Consequently, TPS
is preferred over the cubic spline approach and other methods.

It is imperative to note that an increased number of data
points can lead to the model being over-fitted to the data and
increased model complexity while less number of data points
may not catch the real variation of the data set. Hence, the TPS
model (13) was simulated using three sets of prediction error
data points in equally distributed α and β coordinates. The
first set includes 22 data points, the second set includes 41 data
points, and the third set includes 81 data points. Subsequently,
each TPS model developed with these data sets is referred to
as TPS22, TPS41 and TPS81, respectively. Model testing
and validation were performed to identify the best model for
LSTM occupancy prediction error modelling.

B. Testing And Validation of Proposed TPS Model

According to the basic concept of smoothing splines, the
models are not supposed to interpolate all the input data points
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TABLE II
TPSM MODEL ERRORS

Model - TPSM Modeling σξ Validation σξ

TPS81 3.1709e-16 0.0136
TPS41 2.1555e-16 0.0139
TPS22 1.5150e-16 0.0183

Fig. 5. TPS81 Model fit.

precisely, but smoothly capturing the pattern within the data
points. Hence, the proposed TPS error model was validated
using a dataset of 64 Pe data.

The RMSE results presented in Table II make it clear that a
model’s modeling error is inversely proportional to the number
of data points used for modeling. As the number of data points
increases, resulting in a more intricate model, the modeling
error also escalates. However, models using more data points
tend to exhibit improved accuracy in predicting data during
validation. Table II provides the validation σξ, which is critical
as it reflects the model’s capacity to predict the Pe for diverse
spectrum occupancy patterns.

Based on the tabulated σξ results, it can be concluded that
the TPS81 model exhibits superior accuracy compared to the
other two models while fξ distribution of both TPS81 and
TPS41 on par with each other. Another approach for selecting
the optimal TPS model rather than using the maximum
accuracy strategy is to consider the minimum acceptable
error strategy, which is not applied in this case. The visual
representation of TPS81 model fit can be found in fig.5.
Fig.7 illustrates the cumulative distribution (Fξ) of validation
residuals of TPS81, which lies within −0.055 and 0.017 and
notably, the magnitude of 90.6% of these residuals is less than
0.017. The validation results with higher accuracy confirms
that prediction performance of DL models such as LSTM can
be formulated as a function of α and β.

The model parameters of TPS81 can be found in Table
III and Table IV. To facilitate comprehension, (13) has been
adjusted as follows (18). coefficients in Table III and Table IV
follows the format of (18).

Fig. 6. fξ of Validation residuals.

Fig. 7. Fξ of TPS81 Validation residual.

P e(α, β) =

K∑
k=1

bkQk(c) +

R∑
i=1

S∑
j=1

wijU(rij) (18)

Where,

rij = ||c− cij || = ||(α, β)− (αi, βj)|| (19)

M = R × S with i = 1, 2, . . . , R , j = 1, 2, . . . , S. The R
and S values are both 9. R is number of α values and S is
number of β values used for LSTM prediction, creating a data
set of 81 Pes, ranging from 0.1 to 0.9 with a 0.1 increment.
Hence, the total number of data points, M , is 81.

V. CONCLUSION

This paper proposes an error modeling for Long Short-Term
Memory (LSTM) channel occupancy prediction. We clearly
define a two-state Markovian spectrum occupancy model, an
LSTM prediction model, and a Thin Plate Spline (TPS) model
for error modeling, along with the performance evaluation
matrices. We created an error model using TPS for 81 LSTM
prediction error data points. Testing and validation confirmed
that a model based on 81 equally distributed data points
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TABLE III
COEFFICIENTS OF NONLINEAR ELEMENTS OF TPS81

β1 = 0.1 β2 = 0.2 β3 = 0.3 β4 = 0.4 β5 = 0.5 β6 = 0.6 β7 = 0.7 β8 = 0.8 β9 = 0.9

α1 = 0.1 W11=-0.3208 W12 =0.0127 W13 =0.0821 W14 =-0.7578 W15 =1.6331 W16 =-0.6288 W17=0.1054 W18=0.1230 W19=-0.1229

α2 = 0.2 W21=0.0188 W22=0.0498 W23=0.1163 W24=-0.7225 W25=0.7925 W26=-0.6765 W27=0.1052 W28=0.0694 W29=-0.1116

α3 = 0.3 W31=0.0713 W32=0.1250 W33=0.3096 W34=-0.4702 W35=1.1361 W36=-0.4135 W37=-0.0784 W38=0.2226 W39=-0.0533

α4= 0.4 W41=-0.7579 W42=-0.7178 W43=-0.4777 W44=-1.1955 W45=0.4058 W46=-1.3004 W47=0.4447 W48=-0.4475 W49=-0.3013

α5 = 0.5 W51=1.6438 W52=0.7923 W53=1.1041 W54=0.358 W55=1.6332 W56=0.2942 W57=0.359 W58=0.7093 W59=0.0725

α6 = 0.6 W61=-0.6406 W62=-0.6783 W63=-0.4334 W64=-0.9926 W65=0.2492 W66=-0.8117 W67=-0.2344 W68=-0.0261 W69=-0.375

α7 = 0.7 W71=0.1141 W72=0.0443 W73=0.2138 W74=-0.3528 W75=0.6696 W76=-0.316 W77=0.0259 W78=0.2004 W79=-0.1666

α8 = 0.8 W81=0.1352 W82=0.043 W83=0.198 W84=-0.1568 W85=0.6833 W86=-0.0424 W87=0.216 W88=0.2678 W89=-0.1028

α9 = 0.9 W91=-0.1294 W92=-0.0924 W93=-0.072 W94=-0.3561 W95=0.0746 W96=-0.3757 W97=-0.1699 W98=-0.1023 W99=0.2567

TABLE IV
COEFFICIENTS OF LINEAR ELEMENTS OF TPS81

b0 b1 b2
0.3453 -0.0828 -0.0822

provides greater accuracy for the scenario under considera-
tion. Our study reveals a clear correlation between prediction
performance and channel occupancy patterns. This insight
can be instrumental in selecting an appropriate prediction
model for specific input spectrum data or determining the
extent of accuracy achievable through incremental training of
a prediction model in advance.

REFERENCES

[1] O. Ozyegen, S. Mohammadjafari, E. Kavurmacioglu, J. Maidens, and
A. B. Bener, “Experimental results on the impact of memory in neural
networks for spectrum prediction in land mobile radio bands,” IEEE
Transactions on Cognitive Communications and Networking, vol. 6,
no. 2, pp. 771–782, 2020.

[2] X. Xing, T. Jing, W. Cheng, Y. Huo, and X. Cheng, “Spectrum prediction
in cognitive radio networks,” IEEE Wireless Communications, vol. 20,
no. 2, pp. 90–96, 2013.

[3] G. Ding, Y. Jiao, J. Wang, Y. Zou, Q. Wu, Y.-D. Yao, and L. Hanzo,
“Spectrum inference in cognitive radio networks: Algorithms and ap-
plications,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 150–182, 2017.

[4] P. Chauhan, S. K. Deka, B. C. Chatterjee, and N. Sarma, “Cooperative
spectrum prediction-driven sensing for energy constrained cognitive
radio networks,” IEEE Access, vol. 9, pp. 26107–26118, 2021.

[5] O. Omotere, J. Fuller, L. Qian, and Z. Han, “Spectrum occupancy
prediction in coexisting wireless systems using deep learning,” in 2018
IEEE 88th Vehicular Technology Conference, pp. 1–7, IEEE, 2018.

[6] M. Jia, X. Zhang, J. Sun, X. Gu, and Q. Guo, “Intelligent resource
management for satellite and terrestrial spectrum shared networking
toward b5g,” IEEE Wireless Communications, vol. 27, no. 1, pp. 54–
61, 2020.

[7] S. S. Fernandes, M. R. Makiuchi, M. V. Lamar, and J. L. Bordim,
“An adaptive recurrent neural network model dedicated to opportunis-
tic communication in wireless networks,” in 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 01–08, 2018.

[8] A. M. Schäfer and H.-G. Zimmermann, “Recurrent neural networks
are universal approximators,” International journal of neural systems,
vol. 17, no. 04, pp. 253–263, 2007.

[9] X. Wang, T. Peng, P. Zuo, and X. Wang, “Spectrum prediction method
for ism bands based on lstm,” in 2020 5th International Conference on
Computer and Communication Systems (ICCCS), pp. 580–584, IEEE,
2020.

[10] N. Radhakrishnan and S. Kandeepan, “An improved initialization
method for fast learning in long short-term memory-based markovian
spectrum prediction,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, no. 3, pp. 729–738, 2020.

[11] N. Radhakrishnan, S. Kandeepan, X. Yu, and G. Baldini, “Soft fusion
based cooperative spectrum prediction using lstm,” in International
Conf. on Signal Processing and Communication Systems, pp. 1–7, 2021.

[12] L. Yu, Q. Wang, Y. Guo, and P. Li, “Spectrum availability prediction in
cognitive aerospace communications: A deep learning perspective,” in
2017 Cognitive Communications for Aerospace Applications Workshop
(CCAA), pp. 1–4, IEEE, 2017.

[13] L. Guo, J. Lu, J. An, and K. Yang, “Dsil: An effective spectrum predic-
tion framework against spectrum concept drift,” IEEE Transactions on
Cognitive Communications and Networking, 2024.

[14] N. Radhakrishnan, S. Kandeepan, X. Yu, and G. Baldini, “Performance
analysis of long short-term memory-based markovian spectrum predic-
tion,” IEEE Access, vol. 9, pp. 149582–149595, 2021.

[15] E. Benini and R. Ponza, “Nonparametric fitting of aerodynamic data
using smoothing thin-plate splines,” AIAA journal, vol. 48, no. 7,
pp. 1403–1419, 2010.

[16] S. Shokrzadeh, M. J. Jozani, and E. Bibeau, “Wind turbine power curve
modeling using advanced parametric and nonparametric methods,” IEEE
Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1262–1269, 2014.

[17] H. Eltom, S. Kandeepan, B. Moran, and R. J. Evans, “Spectrum
occupancy prediction using a hidden markov model,” in International
Conf. on Signal Processing and Communication Systems, pp. 1–8, 2015.

[18] P. J. Green and B. W. Silverman, Nonparametric regression and gener-
alized linear models: a roughness penalty approach. Crc Press, 1993.

[19] W. Keller and A. Borkowski, “Thin plate spline interpolation,” Journal
of Geodesy, vol. 93, pp. 1251–1269, 2019.

[20] F. Bookstein, “Principal warps: thin-plate splines and the decomposition
of deformations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 6, pp. 567–585, 1989.

545


