
Enhancing MAVLink Security: Implementation and Performance
Evaluation of Encryption on a Drone Testbed

Adheeba Thahsin, Ananthapadmanabhan A., Saketh Pathak, Arnab Maity, and Gaurav S. Kasbekar

Abstract—Unmanned Aerial Vehicles (UAVs) or drones are
being extensively deployed in various military as well as civilian
applications. The Micro Air Vehicle Link (MAVLink) protocol is
widely used for communication between a UAV and a Ground
Control Station (GCS). However, under this protocol, the UAV
and the GCS communicate through an unencrypted channel,
due to which malicious actors can eavesdrop on the channel
with relative ease. Numerous research efforts have aimed to
integrate encryption into the MAVLink protocol, but these works
have been confined to theoretical analyses or simulation-based
demonstrations. This paper demonstrates the integration of
Advanced Encryption Standard (AES) encryption with counter
(CTR) mode into the MAVLink protocol on a drone testbed.
We conducted a number of flight tests to assess the drone
functionality with and without encryption. Our results show that
the integration of AES-CTR encryption into MAVLink causes
only minimal overheads in the system performance. In particular,
the encryption and decryption times are small and there is only a
slight increase in the memory consumption and CPU load due to
encryption. Our validation of the AES-CTR encryption scheme
on a drone testbed demonstrates that it is a secure and practical
solution for real-world applications.

Index Terms—Unmanned Aerial Vehicle (UAV), MAVLink,
Encryption, Testbed, Advanced Encryption Standard (AES)

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) or drones are being
extensively deployed in various military as well as civil-
ian applications, e.g., search and destroy operations, border
surveillance, managing wildfire, as relays for ad hoc networks,
in disaster monitoring, remote sensing, traffic monitoring, etc.
[1]. The typical components in a UAV system include the UAV
itself, a Ground Control Station (GCS), sensors, and a commu-
nication platform that facilitates seamless interactions among
them [2]. A UAV can operate autonomously based on its pre-
programmed software or be supervised and managed remotely
from the ground by the GCS. Since there is no human pilot
onboard, it is crucial to establish an effective communication
link between the GCS and the UAV to accomplish critical
missions.

The communication between the UAV and the GCS occurs
through various means, such as a radio frequency (RF) link,
satellite link, or cellular network, depending on the range and
requirements of the mission [1]. The information exchanged
between the UAV and the GCS includes command and control
information, telemetry data, payload data, and status alerts.

A. Thahsin, S. Pathak and A. Maity are with the Department
of Aerospace Engineering, Indian Institute of Technology (IIT) Bom-
bay, Mumbai 400076, Maharashtra, India. Ananthapadmanabhan A. and
G. Kasbekar are with the Department of Electrical Engineering, IIT
Bombay. Their email addresses are adeebathahsin@gmail.com, saket-
pathak321@gmail.com, arnab.maity@iitb.ac.in, anantha9102002@gmail.com,
and gskasbekar@ee.iitb.ac.in, respectively. The contributions of A. Thahsin,
S. Pathak, A. Maity, and G. Kasbekar have been supported in part by the
project with code RGSTC01-001.

These pieces of information are exchanged and interpreted uti-
lizing standardized communication protocols to ensure reliable
and efficient data exchange during missions [3].

Due to the significant amount and sensitive nature of UAV
data, it has become a prime target for cyber-attacks. Ensuring
the security of the communication between the UAV and
the GCS is crucial for the success of UAV missions, as it
frequently contains valuable information sought after by ad-
versaries [4]. Malicious actors could exploit vulnerabilities in
communication protocols or software systems to gain unautho-
rized access, manipulate commands, or intercept sensitive data
transmitted between the GCS and the UAV [3], [5]. Moreover,
the reliance on wireless communication channels exposes the
system to risks such as interception, spoofing, and compromise
of the integrity and reliability of the communication link [6],
[7]. Therefore, safeguarding the control and data exchange
between the GCS and the UAV against security threats is
paramount to ensuring the safety, security, and integrity of
sensitive information exchanged between them.

The Micro Air Vehicle Link (MAVLink) [8] protocol stands
out as one of the most widely embraced protocols for commu-
nication between the UAV and the GCS. Despite its robustness
and widespread adoption, the MAVLink communication pro-
tocol lacks a complete security mechanism [6], [9], rendering
it susceptible to attacks. In its earlier version, MAVLink
1.0, the protocol lacked native support for authentication and
authorization and was reported in the National Vulnerabil-
ity Database [10]. However, the current version, MAVLink
2.0, has made significant improvements by incorporating an
authentication mechanism based on message signing and a
message authentication code (HMAC) for integrity purposes
[9]. Despite these advancements, encryption support to provide
confidentiality remains absent due to concerns about its impact
on performance [11]. Consequently, the GCS still communi-
cates with the UAV through an unencrypted channel. With-
out encryption, malicious actors equipped with appropriate
transceivers can eavesdrop on the communication channel and
launch attacks on UAV systems with relative ease.

Numerous research efforts have aimed to tackle these
challenges by integrating encryption into the MAVLink pro-
tocol [11]–[16] (see Section II). However, the majority of
these works have been confined to theoretical analyses or
simulation-based demonstrations. To the best of our knowl-
edge, there has been a notable absence of real-world demon-
strations showcasing the incorporation of encryption in the
MAVLink protocol used in actual drones. In this paper, we
endeavor to bridge this gap by implementing encryption in
MAVLink as well as evaluating its performance via extensive
practical experiments conducted on a drone testbed.

This paper demonstrates the integration of Advanced En-
cryption Standard (AES) encryption with counter (CTR) mode

529979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

into the MAVLink protocol on a drone testbed. We selected
AES encryption due to the strong security it provides and
its compatibility with the hardware of drone flight controller
boards such as the Pixhawk Cube Orange Plus [17], which
comes with built-in support for AES accelerator modules. We
conducted a number of flight tests to assess the drone func-
tionality with and without encryption and evaluated its per-
formance under various conditions. Our results show that the
integration of AES with CTR mode encryption into MAVLink
causes only minimal overheads in the system performance. In
particular, the encryption (respectively, decryption) time was
found to be only 124.6 (respectively, 121.6) microseconds on
average, and the increase in memory consumption (respec-
tively, CPU usage) was found to be only 0.73% (respectively,
4.33%) on average. Our validation of the AES with CTR mode
encryption scheme on a drone testbed demonstrates that it is
a secure and practical solution for real-world applications.

The rest of this paper is organized as follows. Section
II provides a review of related prior literature. Section III
provides background on the MAVLink protocol and AES
encryption. Section IV describes the system model and prob-
lem formulation. Subsequently, Section V provides details of
the implementation, and Section VI describes our experimen-
tal setup. Section VII presents our experimental results and
Section VIII provides conclusions and directions for future
research.

II. RELATED WORK

In [14], MAVSec was introduced to enhance MAVLink
communication security for Ardupilot [18] and PX4 [19]
autopilots. The authors implemented various encryption algo-
rithms, including AES-CBC, AES-CTR, RC4, and ChaCha20,
within the Ardupilot Simulation in the Loop (SITL) setup,
comparing their performance. Similarly, [15] evaluated the
performance of various algorithms, including ChaCha20, en-
cryption by Navid, and DMAV, proposed for MAVLink secu-
rity. Utilizing the Gazebo simulation environment, the authors
conducted a case study to assess the algorithms’ performance
in terms of packet transfer speed, memory utilization, and CPU
consumption.

In [11], the potential for unauthorized access to MAVLink
packets was illustrated. Building on this case study, the authors
proposed an encryption algorithm to safeguard the MAVLink
protocol, which included mapping to ASCII characters and im-
plementing Caesar cipher encryption. Their encryption method
effectively thwarted unauthorized access.

A key exchange procedure for MAVLink encryption was
proposed in [16] to improve the security measures proposed in
MAVSec [14]. The authors also proposed fourteen lightweight
cryptography algorithms for use with MAVLink and com-
pared their performance with that of ChaCha20 proposed
in MAVSec. Then they analyzed the performance of the
Speck128/192 encryption algorithm along with the key ex-
change procedure and found that the key exchange phase does
not add much overhead to the system.

In [12], an algorithm called DMAV was proposed based
on Dynamic DNA coding to secure the MAVLink protocol.
The authors also conducted a performance analysis of the
protocol based on the number of packets sent and the memory

consumption and found that their encryption algorithm does
not cause much overhead.

To enhance MAVLink security, [20] introduced a novel
mechanism named MAV-DTLS. This algorithm was imple-
mented on Ardupilot, demonstrating its resilience against
attacks in a simulation environment. The authors also verified
that MAV-DTLS has minimal impact on the energy consump-
tion and latency.

However, all of the above studies [11], [12], [14]–[16],
[20] are limited to proposing security protocols to encrypt
MAVLink and evaluating their performance using a simulation
setup. None of the above works has implemented the security
mechanisms into a real drone and evaluated its performance.
The feasibility and safety of deploying their designs in real-
world scenarios remain uncertain since their assessments were
limited to simulation setups. In contrast, in this paper, we
implement the AES-CTR encryption algorithm on a real drone
testbed with the Ardupilot Pixhawk Cube Orange Plus flight
controller and evaluate its performance.

In [13], the communication between the GCS and the UAV
was secured by implementing the AES scheme using a drone
prototype built upon the Next-Generation Universal Aerial
Video Platform (NG-UAVP). This implementation involved
integrating the UAV prototype with a Field-Programmable
Gate Array (FPGA), which was used to implement AES.
The primary focus of the authors was on securing payload
data transmitted by the drone, such as video and image data.
However, they observed that the additional weight due to
the extra hardware adversely impacted the performance of
the drone. In contrast, our implementation of AES-CTR does
not require any extra hardware and hence does not have any
adverse impact on the performance of the drone.

III. BACKGROUND

A. MAVLink Protocol

MAVLink is a lightweight communication protocol specif-
ically designed for the exchange of information between a
UAV and a GCS [6]. Developed as an open-source protocol,
MAVLink enables bi-directional command and control and/ or
data exchange between a UAV and a GCS in real-time [21].
Its design emphasizes efficiency, making it suitable for com-
munication in resource-constrained environments commonly
found in small UAV and micro air vehicle systems [22].
MAVLink has two versions: MAVLink 1.0, launched in 2009,
and the current MAVLink 2.0, introduced in 2017, which
is backward compatible [8]. MAVLink messages consist of
command and control messages from the GCS to the UAV, and
status information messages (e.g., location and system status
messages) from the UAV to the GCS. Fig. 1 shows the message
format of MAVLink. Each message includes a header with
auxiliary message information and a payload with data [8].
Message types are identified by Message IDs, with payloads
containing relevant data. The payload size varies depending on
what parameters are communicated, with a maximum length
of 255 bytes [20]. The checksum ensures message integrity
during transmission and the signature ensures authenticity [6].
Notably, the heartbeat message, sent periodically from the
drone to the GCS, is crucial for indicating the drone’s status
and the connection status [23].

530

STX LEN INC
FLAGS

CMP
FLAGS SEQ SYS ID COMP

ID MSG ID PAYLOAD CHECKSUM SIGNATURE

Fig. 1. The figure shows the MAVLink V2.0 packet format [8].

Despite the widespread use of the protocol, MAVLink lacks
an inherent security mechanism for encryption [6]. Adding
encryption to the MAVLink protocol is required to achieve
complete security while using the MAVLink protocol for
communication.

B. Security Issues of MAVLink
The MAVLink protocol was developed with a primary

focus on optimizing performance and addressing resource con-
straints, which inadvertently led to the presence of several se-
curity loopholes. Table I depicts the current state of MAVLink
security. It can be seen from the table that encryption is not
supported by MAVLink. Numerous papers discussing security
and privacy issues in UAVs have highlighted various concerns
[3], [24]. MAVLink 2.0 is identified as susceptible to several of
these attacks, including flooding, packet injection [5], Denial-
of-Service (DoS), and eavesdropping [9].

TABLE I
THE TABLE PROVIDES AN OVERVIEW OF MAVLINK’S SECURITY SUPPORT.

Security Objective Security Mechanism MAVLink Support
Confidentiality Encryption Not supported

Integrity Hashing Supported
Authenticity Signature Supported

Furthermore, researchers have categorized security attacks
on MAVLink into four classes: interception (attacks compro-
mising data confidentiality), modification (attacks compromis-
ing data integrity), interruption (attacks compromising data
availability), and fabrication (attacks on authenticity) [6].

An attacker can perform an eavesdropping attack on the
communication link between the GCS and the UAV by inter-
cepting data such as live video feeds, sensor readings, GPS
data, telemetry feeds, and commands communicated between
the GCS and the UAV. Since the MAVLink protocol does not
encrypt this data, the attacker can eavesdrop on the exchanged
information.

The MAVLink protocol can be secured against the eaves-
dropping attack by adding encryption to it. In this paper, we
integrate AES-CTR encryption into the MAVLink protocol.

C. Advanced Encryption Standard (AES)
AES provides a secure and efficient method for symmet-

ric key encryption. It was established by the U.S. National
Institute of Standards and Technology (NIST) in 2001 and
has since become a globally accepted encryption standard
[25]. AES employs a symmetric key algorithm, utilizing the
same secret key for both encryption and decryption processes
[26]. AES supports key sizes of 128, 192, and 256 bits.
The flexibility in key lengths allows for different levels of
security. Operating on fixed-size blocks of 128 bits, AES
utilizes a Substitution-Permutation Network (SPN) structure.
This involves a series of mathematical operations, including
substitution, permutation, mixing, and key addition, to trans-
form the input data into the encrypted output [25]. The number

MAVLink

Command and control

Flight data

GCS

Fig. 2. The figure shows communication between a UAV and a GCS using
MAVLink.

of rounds in the encryption process varies with the key size:
10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and
14 rounds for 256-bit keys. This iterative approach enhances
security by increasing the complexity of the encryption process
[27].

AES encryption offers various modes of operation, in-
cluding Electronic Codebook (ECB), Cipher Block Chaining
(CBC), Cipher Feedback (CFB), Output Feedback (OFB), and
Counter (CTR), each with unique characteristics and suitability
for different applications [28]. The CTR mode in AES encryp-
tion transforms it into a stream cipher, utilizing a counter value
for encryption. This mode allows for parallel encryption and
decryption, making it ideal for high-performance applications
[28]. Unlike block cipher modes, which require ciphertext
lengths in multiples of the block size (16 bytes for AES-128),
CTR mode ensures that the length of the ciphertext aligns with
the length of the plaintext, making it suitable for MAVLink
encryption within its payload length limit of 255 bytes.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

This study focuses on a communication link employing
the MAVLink protocol between a UAV and a GCS (see
Fig. 2). Key components of the system include the UAV,
featuring a MAVLink-enabled flight controller, and the GCS
software responsible for UAV monitoring and control. The
flight controller also known as autopilot uses different sensors
such as an inertial measurement unit (IMU), a barometer, and
a GPS to control the UAV. Communication takes place over a
wireless link, which commonly utilizes a radio frequency (RF)
link or the Wi-Fi protocol. MAVLink provides bidirectional
communication between a UAV and a GCS. Commands from
the GCS are sent to the UAV and the UAV sends back flight
details to the GCS. Both the UAV and the GCS exchange
heartbeat messages within specific intervals to keep alive
the communication. This information is encapsulated in a
MAVLink frame, whose format is shown in Fig. 1. Notably,
the MAVLink protocol utilized in this communication lacks
encryption, and transmits even mission-critical information
without protecting it via encryption. Our objective is to design
and implement a secure communication framework for UAV-
GCS interactions, by integrating AES-CTR encryption within
the MAVLink protocol, while minimizing the impact on per-
formance. We seek to evaluate the feasibility of the system by
testing the solution on a drone testbed.

V. IMPLEMENTATION

In this section, we outline our implementation of encryption
mechanisms in the MAVLink protocol. When integrating en-
cryption into MAVLink, it is crucial to consider its impact on

531

Payload

Encryption

Header Encrypted
payload Checksum

Encrypted
payload

(a) MAVLink payload encryption

Payload

Decryption

Header Encrypted
payload Checksum

Is checksum
verification
successful?

Yes

Discard
payload

No

(b) MAVLink payload decryption

Fig. 3. The figure shows the integration of encryption and decryption into
MAVLink.

both security and protocol functionality. Encrypting the header
would hinder the recipient’s ability to recognize the message
type [6]. Therefore, our design only encrypts the payload
while keeping the header unencrypted, ensuring seamless
message recognition (see Fig. 3a). Next, consider MAVLink’s
checksum mechanism, which verifies message integrity. In
our design, encryption is applied before checksum calculation,
ensuring that the payload’s confidentiality is safeguarded (see
Fig. 3a). Subsequently, decryption takes place after check-
sum verification, guaranteeing the integrity of the message
during its transmission and reception (see Fig. 3b). This
approach ensures that our encryption-decryption process does
not interfere with the integrity and functionality of MAVLink
communication.

Our implementation involves modifying the MAVLink mod-
ules within both the GCS and UAV flight controller soft-
ware. Our drone’s flight controller system relies on Ardupilot
[18] as the autopilot and QGroundController (QGC) [29] as
the GCS. Ardupilot and QGC use the MAVLink libraries
generated for the C language. Within the MAVLink library,
the mavlink helpers.h file handles the reception, decoding,
transmission, and encoding of MAVLink messages. In our
implementation, this file is enhanced to integrate encryption
support for packets before transmission and decryption for
received payloads during message parsing. The encryption key
is hard-coded in this file.

Additionally, we made modifications to the
APMFirmwareP lugin.cc file in QGC to ensure proper
firmware setup. This file acts as the interface between the QGC
and Ardupilot firmware, ensuring seamless communication.
It validates and re-encodes MAVLink messages required for
the firmware setup before transmission and after reception to
maintain compatibility across the MAVLink message versions
exchanged between them. However, this reconstruction
process internally encrypts the message, necessitating
additional decryption to counteract this effect.

VI. EXPERIMENTAL SETUP
Our experimental drone setup for performance evaluation

comprised a quadcopter with a Pixhawk Cube Orange Plus

UAVGCS

Telemetry Radio
Radio Controller

Fig. 4. The figure shows our drone testbed experimental setup.

flight controller board [17], a Radiomaster Boxer Radio Con-
troller [30], a Holybro-SiK telemetry radio module [31], and
a laptop running QGroundController (QGC) [29] as the GCS.
Additional components included a ublox GPS with antenna
[32], radio modules [31], a LiPo 6s 10000 mAh battery [33],
and four motors [34] with electronic speed control (ESC) [35].
To minimize the complexity, no external sensors were inte-
grated into the drone. Fig. 4 shows the essential components
of our testbed. The Cube Orange Plus flight controller utilized
in the drone is an advanced open-source autopilot powered by
400MHz Cortex M7 and 200 MHz Cortex M4 CPUs [17].

Ardupilot served as the software controlling the Pixhawk
Cube Orange Plus flight controller. To enhance security, mod-
ifications were made to the MAVLink code within the Ardupi-
lot framework to support encryption, resulting in custom
firmware tailored for the Ardupilot Cube Orange Plus flight
controller. A custom QGC application image with encryption
capabilities was developed for deployment on Linux 22.04
installed in the laptop. Communication between the laptop and
the drone was established via a Holybro-SiK telemetry radio
module.

The experimental setup also included a Wireshark network
traffic analyzer [36] running on the same laptop as the GCS
to capture and analyze MAVLink packets. Lua scripts [37]
to parse the MAVLink messages were generated using the
MAVGen tool [38]. This script was integrated as a plugin
into Wireshark, enabling the parsing of MAVLink messages
directly within the Wireshark interface.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the system’s performance using
metrics such as the encryption and decryption times, available
memory, and CPU load. The Ardupilot firmware on the drone
was modified twice for testing: first, the standard version was
used, and then it was replaced with the version incorporating
encryption. With both versions, the same mission plan was
executed separately. The flight test used the mission plan
shown in Fig. 5a: in particular, the drone traversed the tra-
jectory shown in yellow in Fig. 5a in a playground within
the IIT Bombay campus. Fig. 5b depicts the drone executing
the mission. We conducted measurements across a range of
payload sizes, from 25 bytes to 225 bytes, with increments of

532

Mission planned for flight

3D view of mission plan

(a) Mission plan used for the flight test

Drone executing mission

(b) Drone executing the mission

Fig. 5. The figure shows the flight test of the drone with and without
encryption using a planned mission.

25 bytes each. These adjustments were implemented by modi-
fying the length of the HEARTBEAT message as required.
All measurements, viz., those of encrytion and decryption
times, available memory, and CPU load, were conducted
within Ardupilot (drone). The data was recorded using the
dataflash log feature within Ardupilot. The experiments that
were conducted and the corresponding results are described
below.

Encryption and decryption times: Encryption and decryp-
tion times reflect the efficiency and speed of cryptographic
operations within a system. The measurement process involved
sending HEARTBEAT messages with varying payload
lengths, while the drone was in flight, from the QGC (GCS)
to Ardupilot (drone) for decryption time evaluation and from
Ardupilot to QGC for encryption time evaluation. A timer
was initiated before invoking the AES-CTR encryption or
decryption function, and the time difference upon function
completion was logged into Ardupilot’s dataflash log. Fig. 6a
(respectively, Fig. 6b) shows the encryption time (respectively,
decryption time) for varying MAVLink payload sizes. The
average encryption time (respectively, decryption time) is
around 124.6 µs (respectively, 121.6 µs). These measurements
suggest that encryption and decryption are executed in short
durations, indicating highly efficient encryption and decryption
performance.

Memory consumption: The available memory reflects the
remaining (free) RAM for executing tasks and storing data.
In drone systems, where storage resources are often limited,
monitoring the available memory helps to check whether
there is enough free space when encryption and decryption
processes run, so that there is no memory exhaustion or system
instability. To understand the effect of encryption on memory

(a) Encryption time (b) Decryption time

(c) Available memory in the system (d) CPU load of the system

Fig. 6. Figs. (a) and (b) show the encryption time and decryption time,
respectively, with varying payload sizes. Figs. (c) and (d) show the available
memory and CPU load, respectively, with and without encryption for varying
payload sizes.

consumption, the average available memory for each payload
length with and without encryption were observed from the
Ardupilot cube dataflash logs. Fig. 6c shows measurements of
the available memory recorded during the drone’s flight tests,
comparing the cases with and without encryption. As expected,
the available memory without encryption exceeds that with en-
cryption. However, on average, the difference is only 4.27 kB,
and there is a percentage decrease of only 0.73%, indicating
that encryption does not significantly burden the memory.

CPU load: Encryption introduces a computational over-
head, which can increase the CPU load. We quantified the
impact of encryption on the drone’s CPU load by measuring
the average CPU load during flight tests with and without
encryption. The CPU load for each payload length with and
without encryption was observed from the Ardupilot cube
dataflash logs. Fig. 6d shows the CPU utilization of the drone
system, comparing the scenarios with and without encryption.
It demonstrates that encryption only increases the CPU load
by a small amount of around 4.33% on average.

Performance comparison: Table II provides a comparison
between the results from our drone testbed and those from
various simulation-based studies. Due to the absence of data
on encryption and decryption times in the simulation-based
studies, the comparison focuses solely on memory consump-
tion and CPU usage. In terms of memory consumption, the
flight test shows an increase of 0.86% when encryption is
used, which is notably higher than for the simulation results
for various algorithms. The simulation result for AES-CTR
from [14] shows an increase in memory consumption that is
as low as 0.054%. This indicates that real-world conditions
may impose higher memory demands than those expected in
simulations. In terms of CPU usage, the flight test shows a

533

4.33% increase when encryption is used, which is lower than
for all the simulation results, except that in [11], which reports
a 3.63% increase. This difference is due to the fact that the
real-world implementation benefits from hardware-accelerated
AES encryption, resulting in lower CPU usage. Overall, while
the increase in memory consumption due to encryption in real-
world tests is higher than in simulations, the increase in CPU
usage is lower, reflecting a discrepancy between simulated and
actual operating environments. This shows that it is important
to evaluate the performance of encryption algorithms using
a practical drone testbed, as in our study; simulation-based
studies do not suffice.

TABLE II
PERFORMANCE COMPARISON WITH SIMULATION BASED APPROACHES

Method Name Percentage Increase Percentage Increase
in Memory in CPU Usage

Consumption
Simulation AES-CTR [14] 0.054 9.09
Simulation ChaCha20 [15] 0.043 9.09

Simulation DMAV [15] 0.13 18.18
Simulation Navid et al. [11] 0.0625 3.63

Drone Testbed 0.86 4.33

VIII. CONCLUSIONS AND FUTURE WORK
We demonstrated the integration of AES encryption with

CTR mode into the MAVLink protocol on a drone testbed.
Our results show that the integration of AES-CTR encryption
into MAVLink causes only minimal overheads in the system
performance. In particular, the encryption and decryption times
are small and there is only a slight increase in the memory
consumption and CPU load due to encryption. Our validation
of the AES with CTR mode encryption scheme on a drone
testbed demonstrates that it is a secure and practical solution
for real-world applications. A direction for future research is
to integrate other encryption schemes, e.g., ChaCha20, into
MAVLink using a drone testbed and compare their perfor-
mance with that of our AES-CTR implementation.

REFERENCES

[1] G. Singhal, B. Bansod, and L. Mathew, “Unmanned
Aerial Vehicle Classification, Applications and Challenges:
A Review,” Preprints, November 2018. [Online]. Available:
https://doi.org/10.20944/preprints201811.0601.v1

[2] F. Ahmed, J. C. Mohanta, A. Keshari, and P. S. Yadav, “Recent Advances
in Unmanned Aerial Vehicles: A Review,” Arabian Journal for Science
and Engineering, vol. 47, no. 7, pp. 7963–7984, Jul 2022.

[3] Y. Mekdad, A. Aris, L. Babun, A. E. Fergougui, M. Conti, R. Lazzeretti,
and A. S. Uluagac, “A Survey on Security and Privacy Issues of UAVs,”
Computer Networks, vol. 224, p. 109626, 2023.

[4] S. Dahiya and M. Garg, “Unmanned Aerial Vehicles: Vulnerability
to Cyber Attacks,” in Proceedings of UASG 2019. Cham: Springer
International Publishing, 2020, pp. 201–211.

[5] Y.-M. Kwon, J. Yu, B.-M. Cho, Y. Eun, and K.-J. Park, “Empirical
Analysis of MAVLink Protocol Vulnerability for Attacking Unmanned
Aerial Vehicles,” IEEE Access, vol. 6, pp. 43 203–43 212, 2018.

[6] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khal-
gui, “Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey,” IEEE
Access, vol. 7, pp. 87 658–87 680, 2019.

[7] M. Ficco, R. Palmiero, M. Rak, and D. Granata, “MAVLink Protocol
for Unmanned Aerial Vehicle: Vulnerabilities Analysis,” in 2022 IEEE
Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), 2022, pp. 1–6.

[8] “MAVLink Micro Air Vehicle Protocol.” [Online]. Available:
https://github.com/mavlink

[9] H. Xu, H. Zhang, J. Sun, W. Xu, W. Wang, H. Li, and J. Zhang,
“Experimental Analysis of MAVLink Protocol Vulnerability on UAVs
Security Experiment Platform,” in IAI, 2021, pp. 1–6.

[10] “National Vulnerability Database - CVE-2020-10282 Detail,” March
2020. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2020-
10282

[11] N. Khan, N. Jhanjhi, S. Brohi, and A. Almazroi, “A Secure Communi-
cation Protocol for Unmanned Aerial Vehicles,” Computers, Materials
and Continua, vol. 70, pp. 601–618, 01 2021.

[12] G. Emad Kassim and S. Hassan Hashem, “DMAV: Enhanced MAV Link
Protocol Using Dynamic DNA Coding for Unmanned Aerial Vehicles,”
iJOE, vol. 18, no. 11, p. pp. 4–16, Aug. 2022.

[13] A. Shoufan, H. AlNoon, and J. Baek, “Secure Communication in Civil
Drones,” in Information Systems Security and Privacy. Cham: Springer
International Publishing, 2015, pp. 177–195.

[14] A. Allouch, O. Cheikhrouhou, A. Koubâa, M. Khalgui, and T. Abbes,
“MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Un-
manned Aerial Systems,” in 2019 15th IWCMC, 2019, pp. 621–628.

[15] N. Sabuwala and R. D. Daruwala, “Securing Unmanned Aerial Vehicles
by Encrypting MAVLink Protocol,” in 2022 IEEE Bombay Section
Signature Conference (IBSSC), 2022, pp. 1–6.

[16] R. Pizzolante, A. Castiglione, F. Palmieri, A. Passaro, R. Zaccagnino,
and S. La Vecchia, “Improving Drone Security in Smart Cities via
Lightweight Cryptography,” in Computational Science and Its Applica-
tions – ICCSA 2023 Workshops. Cham: Springer Nature Switzerland,
2023, pp. 99–115.

[17] “The Cube Orange/+ With ADSB-In Overview.” [Online].
Available: https://ardupilot.org/copter/docs/common-thecubeorange-
overview.html#system-features

[18] “Ardupilot Documentation.” [Online]. Available:
https://ardupilot.org/ardupilot/

[19] “Open Source Autopilot For Drone Developers.” [Online]. Available:
https://px4.io/

[20] L. Chaari, S. Chabanu, and J. Rezugi, “MAV-DTLS toward Security
Enhancement of the UAV-GCS Communication,” in 2020 IEEE 92nd
Vehicular Technology Conference (VTC2020-Fall), 2020, pp. 1–5.

[21] “The Dronecode Foundation - We are Setting the Standards in the Drone
Industry with Open-Source.” [Online]. Available: https://dronecode.org/

[22] L. Reichstein, S. Schopferer, and F. Jünger, “A Comparison of Com-
mand and Control Communication Protocols for Unmanned Aircraft:
STANAG 4586 vs. MAVLink,” in ICUAS, 2022, pp. 1283–1292.

[23] S. Atoev, K.-R. Kwon, S.-H. Lee, and K.-S. Moon, “Data Analysis of
the MAVLink Communication Protocol,” in ICISCT, 2017, pp. 1–3.

[24] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security Anal-
ysis of Drones Systems: Attacks, Limitations, and Recommendations,”
Internet of Things, vol. 11, p. 100218, 2020.

[25] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced Encryption Standard (AES),” 2001-11-26 2001.

[26] A. M. Abdullah et al., “Advanced Encryption Standard (AES) Algorithm
to Encrypt and Decrypt Data,” Cryptography and Network Security,
vol. 16, no. 1, p. 11, 2017.

[27] M. Vaidehi and B. J. Rabi, “Design and Analysis of AES-CBC Mode
for High Security Applications,” in 2nd ICCTET, 2014, pp. 499–502.

[28] S. Almuhammadi and I. Al Hejri, “A Comparative Analysis of AES
Common Modes of Operation,” in CCECE, 2017, pp. 1–4.

[29] “QGroundControl User Guide.” [Online]. Available:
https://docs.qgroundcontrol.com/master/en/qgc-user-guide/index.html

[30] “Radiomaster - Boxer Radio Transparent Version (ELRS / M2).”
[Online]. Available: https://www.radiomasterrc.com/collections/boxer-
1/products/boxer-radio-transparent-version

[31] “SiK Telemetry Radio V3.” [Online]. Available:
https://docs.holybro.com/radio/sik-telemetry-radio-v3

[32] “Cubepilot - Here 3 Manual.” [Online]. Available:
https://docs.cubepilot.org/user-guides/here-3/here-3-manual

[33] “Tattu 6S 10000mAh 30C 22.2V Lipo Battery Pack With EC5 Plug For
UAV Drone.” [Online]. Available: https://genstattu.com/ta-30c-10000-
6s1p-ec5.html

[34] “TMOTOR Antigravity MN4006 KV380 Brushless Multirotor
Motor.” [Online]. Available: https://shop.tmotor.com/products/mn4006-
brushless-multirotor-motor

[35] “TMOTOR AIR 40A 6S ESC for Multirotor Drones.” [Online].
Available: https://shop.tmotor.com/products/air-40a-6s

[36] J. Bullock and J. T. Parker, Wireshark for Security Professionals: Using
Wireshark and the Metasploit Framework. John Wiley & Sons, 2017.

[37] “Debugging with Wireshark.” [Online]. Available:
https://mavlink.io/en/guide/wireshark.html

[38] “Generating MAVLink libraries.” [Online]. Available:
https://mavlink.io/en/getting started/generate libraries.html

534

