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Abstract—Human activity recognition (HAR) utilizing radar
sensors has garnered significant attention due to its ability to
robustly recognize activities in various environments without
infringing on privacy concerns. In prior radar-based HAR
studies, recognition has been predominantly conducted using
spectrograms generated from received signals. In this paper,
we propose a novel time-frequency domain signal representation
method specifically designed for the effective analysis of micro-
Doppler signatures arising from human activities. The proposed
method applies a filterbank capable of nonlinearly transforming
the frequency bands of conventional spectrograms, which possess
linear frequency bands. This transformation allows for a more
precise analysis of micro-Doppler patterns generated by human
activities. We evaluated the recognition performance by applying
convolutional neural networks to datasets that utilized the pro-
posed filterbank-based spectrograms in comparison with those
employing conventional spectrograms. Our results demonstrate
that the modified spectrograms achieved up to 5.02% improve-
ment in recognition performance.

Index Terms—human activity recognition, micro-Doppler, fil-
terbank, deep learning

I. INTRODUCTION

Recently, radar systems have been actively utilized in track-
ing moving humans [1], recognizing various human activities
[2], monitoring vital signs [3], and recognizing hand gestures
[4]. Among these, radar-based human activity recognition
(HAR) holds significant societal value. For instance, as illus-
trated in Fig. 1, HAR systems can be applied in elderly care to
detect life-threatening activities such as falls. Traditional HAR
systems primarily acquire data through camera, LiDAR, or
wearable sensors. However, camera-based surveillance suffers
from low resolution in low-light conditions and poses privacy
concerns. LiDAR sensors are easily affected by environmental
conditions, and wearable sensors can be uncomfortable for
users due to the sensation of wearing them. In contrast,
HAR utilizing radar sensors has emerged as an important
research topic due to its ability to overcome these limitations
effectively.

Generally, radar-based HAR is achieved by exploiting the
features of human movement embedded in the spectrograms,
which have a time-Doppler domain. Numerous studies have
focused on using spectrograms for HAR because spectrograms
can capture the movement characteristics of individual body

Fig. 1. Processes of the HAR system for elderly care.

parts [2]. Traditional radar-based HAR typically employs man-
ually extracted features from spectrograms and uses a support
vector machine [5] or multi-layer perceptron [6] as the clas-
sifier. However, this manual feature extraction approach often
struggles to capture highly discriminative feature information
from spectrograms, leading to reduced accuracy, especially
when dealing with low-power target echo signals. To ad-
dress these limitations, methods utilizing deep-learning mod-
els have been proposed, where features within spectrograms
are automatically extracted and classified. In these studies,
convolutional neural networks (CNNs) are employed, using
convolution layers to effectively extract features embedded
within the two-dimensional spectrogram data [2].

While spectrograms are useful for visualizing various fre-
quency components, they have limitations in analyzing the
delicate Doppler patterns associated with human activities.
The short-time Fourier transform (STFT) used in spectrogram
generation applies a linear scale in time-frequency analysis,
which makes it challenging to capture detailed features arising
from micro-Doppler effects caused by subtle vibrations or
rotations of human moving.

To overcome these limitations, this study proposes a novel
time-frequency representation technique optimized for analyz-
ing the distinctive micro-Doppler patterns of human activities.
The proposed method applies a filterbank that adjusts the
frequency resolution of conventional spectrograms to capture
micro-Doppler features more precisely. Based on data obtained
from real-world experiments, we validate the superiority of the
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Fig. 2. Flowchart of the spectrogram-based conventional HAR system.

Fig. 3. Flowchart of the proposed HAR system.

proposed method by comparing the recognition performance
between deep-learning models that utilize conventional spec-
trograms and those that use the proposed spectrogram data.

II. SPECTROGRAM-BASED HAR METHOD

The raw data obtained from radar sensors consists of
complex in-phase/quadrature (I/Q) time-series data. The first
step in generating a spectrogram involves creating a range
profile from the raw I/Q data. This profile shows the distance
of the target echo over time. Since the received signal in
a radar system contains both target echo signals and static
clutter, it is necessary to remove the DC component from
the received signal. In this paper, we utilize a moving target
indication (MTI) filter for static clutter suppression. After the
MTI filter is applied to the range profile, the STFT is applied
to generate the spectrogram. As shown in Fig. 2, the received
signal is converted into a two-dimensional spectrogram, which
is then input into a deep learning-based classification model
to determine human activity.

III. PROPOSED HAR METHOD

Unlike traditional recognition methods that solely rely on
conventional spectrograms, we propose a methodology that
utilizes modified spectrograms. Fig. 3 illustrates an overview
of the proposed system. Our HAR system is composed of four
blocks: 1) spectrogram generation, 2) Doppler-scaled spectro-
gram generation via filterbank, 3) data concatenation, and 4)
activity recognition using a deep learning-based classification
model.

The Doppler-scaled spectrogram can be generated by non-
linearly transforming the frequency domain of the original
spectrogram. To achieve this, a Doppler-scaled filterbank is
applied to the spectrogram, converting the linear frequency
spectrum into a Doppler-scaled frequency spectrum. Typically,
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Fig. 4. Example of the Doppler-scaled filterbank.

the key features of Doppler frequencies resulting from human
activities are concentrated in the lower frequency range. In this
study, the proposed Doppler scale utilizes a frequency metric
that allows for a more detailed examination of frequency
regions relevant to activity recognition. The proposed Doppler
scale is mathematically modeled to account for nonlinear
frequency perception and is defined as follows:

D(f) =
fc

log10(2)
log10

(
1 +

f

fc

)
, (1)

where f is the original frequency (in Hz) and D(f) is the
corresponding Doppler-scaled frequency. The parameter fc is
the corner frequency, which determines the frequency range
for detailed analysis. By applying the Doppler scale defined
in (1), the frequency region below fc is analyzed linearly,
providing higher resolution, while the region above fc is
analyzed nonlinearly with less detail.

A filterbank is generated to apply this nonlinear Doppler-
scale transformation to the spectrogram. For filterbank gen-
eration, the minimum frequency fmin and maximum fre-
quency fmax in the original spectrogram are transformed
into D(fmin) and D(fmax) using (1). The range between
D(fmin) and D(fmax) is then divided into n equally spaced
intervals, where n represents the number of bands used in the
Doppler-scale transformation, which also determines the size
of the resulting Doppler-scaled spectrogram. The n divided
values are converted back to the original frequency domain
to determine the center frequencies of each band. Filters are
then generated for each band based on these Doppler-scaled-
transformed center frequencies. Each filter is shaped as a
triangular function, linearly increasing from 0 to 1 between
the previous center frequency and the current center frequency,
and linearly decreasing from 1 to 0 between the current center
frequency and the next center frequency. Fig. 4 shows an
example of these filters when the corner frequency fc is 500
Hz and n is 16.

After generating a filterbank for frequencies ranging from
0 Hz to half of the sampling frequency, this filterbank
is applied symmetrically to both the positive and negative
frequency range of the original spectrogram simultaneously.
Each frequency component of the spectrogram is weighted
by the corresponding filter in its frequency band, resulting
in the Doppler-scaled spectrogram. Fig. 5 shows examples of
spectrograms obtained from a limping action. The Doppler-
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Fig. 5. Examples of (a) conventional spectrogram and (b) Doppler-scaled
spectrogram with fc of 500 Hz and n of 64.

scaled spectrogram example shows that the resolution in-
creases in regions where micro-Doppler frequencies exist
while it decreases in other regions. As a result, the micro-
Doppler effects generated by human activities become more
distinct and pronounced.

In the proposed HAR method, we utilize both the original
spectrogram and the Doppler-scaled spectrogram to perform
HAR. To efficiently use these two types of time-frequency
domain data, we concatenate them into a two-channel input,
which is then fed into the deep learning-based classification
model.

IV. PERFORMANCE ANALYSIS

To analyze the performance of the proposed method, we
collected data that captured various daily activities. The data
was acquired using a Texas Instruments AWR1642BOOST
frequency-modulated continuous wave (FMCW) radar. Partic-
ipants performed a total of 6 different daily activities (falling,
walking, running, picking up objects, limping, sitting) at
various distances within 4m from the radar. To ensure diversity
in the data, 5 participants were involved in the data collection
process, and a total of 2,250 activity data were gathered. For
training the deep learning-based HAR model, data from four
participants was used, while data from one participant not
included in the training dataset was used for testing.

To compare the performance of the spectrogram-based HAR
method with the novel HAR method using the two-channel
spectrogram dataset, we selected VGG16, VGG19 [7], and
ResNet18 [8] as classification models. Table I presents the
HAR accuracy of various classification models using different
datasets. When using only spectrograms for classification, the
average accuracy across the three models was 92.7%. The
datasets using the proposed Doppler-scaled spectrograms were
created with various fc values. The average classification
accuracies when fc was set to 400, 500, and 600 were 92.1%
for ResNet18, 95.5% for VGG16, and 97.1% for VGG19.
These results show that the models using the Doppler-scaled
spectrogram dataset achieved superior classification perfor-
mance compared to the models using only spectrograms, with
improvements of 0.52% for ResNet18, 3.35% for VGG16, and
2.72% for VGG19. These performance analysis results indicate
that the proposed Doppler-scaled spectrogram can significantly
enhance the performance of deep learning-based HAR models.

TABLE I
RECOGNITION ACCURACY OF HAR MODELS ON VARIOUS DATASETS

V. CONCLUSION

In this paper, we proposed a HAR method that utilizes
Doppler-scaled spectrograms generated by applying a filter-
bank to conventional spectrograms. The Doppler-scaled spec-
trogram offers enhanced resolution in regions where human ac-
tivities produce micro-Doppler frequencies, thereby facilitating
the efficient extraction of micro-Doppler signatures. The pro-
posed method employs a two-channel input by concatenating
the conventional spectrogram and Doppler-scaled spectrogram
to enhance HAR performance. Experimental results show that
the recognition accuracy improved by up to 5.02% compared
to HAR models using only conventional spectrograms. This
result demonstrates that the proposed Doppler-scaled spectro-
gram can significantly contribute to HAR research.

This study proposed a spectrogram transformation method
where the corner frequencies were selected manually. In future
work, research will focus on developing a method to automat-
ically select the optimal corner frequencies for spectrogram
transformation.
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