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Abstract—This paper employs a multioutput regression tech-
nique to predict the performance of RADAR sensors used in au-
tonomous driving. The study aims to enhance prediction accuracy
by utilizing real-world RADAR feature process data obtained
from the manufacturing process. The analysis is conducted
through the core algorithm, the catboost regressor, along with two
additional standard models and their corresponding multioutput
versions. The research findings demonstrate that the modified
NRMSE(MNRMSE) of the multioutput regressor models are
up to 0.006 lower than that of individual target models, indi-
cating superior performance of the multioutput approach. The
primary algorithm, the multioutput catboost regressor, achieved
a MNRMSE of 1.9307. This result validates that multioutput
models effectively capture correlations between outputs, reduce
redundant data learning, and mitigate overfitting. The findings
suggest that multioutput regression models, particularly catboost,
can be effectively applied not only to RADAR but also to other
industrial process datasets to improve yield. Future research will
aim to integrate more comprehensive process data and further
refine the model to maximize prediction accuracy. Additionally,
applying these models to various industrial fields is expected
to provide valuable insights for improving production yield and
reducing costs.

I. INTRODUCTION

A. Background and Motivation

Demand for various manufacturing products, including
semiconductors, continues to grow, and this trend is expected
to continue going forward [1]. This increase has led to a
significant increase in the emphasis on product quality and per-
formance across industries, driven by advances in technologies
such as artificial intelligence (AI). As a result, the complexity
of manufacturing processes has also been enhanced to meet
this demand [2]. However, companies are facing ongoing
challenges in reducing production costs. To address these
issues, many businesses are focusing on improving production
yields. On average, defective products cause significant finan-
cial losses every year [3]. By improving yield, companies can
improve their competitive advantage and increase profitability
[4]. This highlights the important role of yield optimization
across various manufacturing industries, where utilizes process
data to improve production outcomes has become a central
strategy.

This paper focuses on radio detection and ranging(RADAR)
sensor data, a key technology that emits radio waves and
measures the time taken for their return after reflecting off
objects, thereby determining their distance and velocity. The
role of RADAR technology has grown significantly, especially
in sectors such as autonomous driving, robotics, and military
applications. These fields exhibit rapid technological advance-
ments, with RADAR playing a pivotal role in autonomous
vehicles. In this domain, reliable detection of vehicle speed,
distance, and other critical factors are essential for ensuring
safety—a paramount concern in the industry. Thus, this paper
seeks to develop a predictive model for RADAR sensor
performance based on process data. The dataset employed
originates from actual RADAR production data provided by a
corporate research laboratory, specifically related to RADAR
systems utilized in autonomous vehicles [5].

B. Contributions

• Handling the correlation between multiple outputs
This model effectively handles the correlation between
multiple outputs, allowing it to make more accurate
predictions by considering the correlation among variable
features.

• Mitigation of Data Leakage By using ordered boosting
in catboost, the model reduces the risk of data leakage,
especially when handling multioutput tasks where multi-
ple outputs are predicted simultaneously.

• The Real World Data This model is based on data from
the actual manufacturing process. Therefore, applying it
in real industrial settings can make more realistic results.

C. Organization

The rest of the paper is organized as follows. Sec. II
reviews the existing research in the field and explains the
objectives of this study. Sec. III discusses the theory and
features of the multioutput catboost regressor, which is the
core algorithm of this paper. Sec. IV evaluates the performance
of the proposed algorithm, providing comparisons with other
benchmarks. Lastly, Sec. V concludes the paper based on the
findings and suggests directions for future research.
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II. PRELIMINARIES

A. Related Work

Catboost regressor, being a tree-based algorithm, demon-
strates strengths not only with categorical data but also with
numerical data [6]. It excels in predicting complex numerical
data with high accuracy and efficiency. While models like
xgboost and catboost are commonly used for predicting nu-
merical data, catboost often outperforms prediction accuracy
[7]. Catboost is particularly effective in predicting numerical
features within real-world process data and handles data pro-
cessing tasks with ease [8]. Additionally, Catboost’s ordered
boosting technique helps reduce overfitting, thus enhancing the
model’s generalization capabilities [9]. Catboost also supports
multioutput regression, making it especially advantageous for
RADAR sensor process data with multiple parameters and
their interdependencies.In models that attempted to mitigate
input and output noises through multioutput regression, sig-
nificant results were achieved [10].

B. The objective of this paper

This paper aims to develop a model that predicts the
performance of RADAR using real-world process data. The
objective is to create a predictive model based on process data
that minimizes normalized root mean squared error(NRMSE)
by considering the importance of features. Ultimately, the de-
rived performance prediction model is expected to be applied
across various industries, contributing to improved yield while
addressing economic and environmental challenges.

III. ALGORITHM DESIGN

Modified NRMSE (MNRMSE) is used as the evaluation
metric for the proposed algorithm. NRMSE is one of the
metrics used to assess prediction performance in regression
models, representing the root means squared error (RMSE)
normalized to the scale of the data. The reason for using
NRMSE in this model is that it allows for fair and consis-
tent comparison of prediction errors across various variables
among several evaluation metrics. Standard metrics like RMSE
or mean absolute error (MAE) are sensitive to the scale
and range of each variable, making them less suitable when
dealing with variables of different units. In situations involving
multioutput prediction, the scales of the individual variables
differ, which makes it challenging to evaluate errors uniformly
across variables. Normalizing the error adjusts it to the range
or variability of the predicted values, enabling more accurate
comparisons across different models.

The formula for NRMSE can be expressed as,

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

max(y)−min(y)
(1)

where n is the number of data points, yi is the actual value, ŷi
is the predicted value, max(y) and min(y) are the maximum
and minimum actual values.

This paper utilizes MNRMSE instead of the general
NRMSE. MNRMSE applies an additional 20% weight to the

first to seventh evaluation criteria, and the sum of all NRMSE
values are computed.The MNRMSE can be expressed as,

MNRMSE =

∑7
k=1 1.2 · NRMSEk +

∑n
k=8 NRMSEk

n
(2)

where n is the total number of evaluation criteria, NRMSEk

is the NRMSE value for the k-th criterion, The first 7 criteria
are given an additional weight of 20% to emphasize their im-
portance in RADAR performance. The reason for employing
this method is that, as shown in III, multiple parameters exist,
and it was not appropriate to evaluate each error separately for
predicting RADAR performance. Therefore, weights are added
to the first to seventh evaluation criteria, which significantly
impact performance in process data. Before explaining the
core algorithm proposed in this paper, the multioutput catboost
regression model, we will describe the basic concept of the
catboost model. The catboost regressor uses ordered boosting,
which is based on Gradient Boosting. Gradient Boosting is
an algorithm that sequentially combines several weak learners
to improve prediction performance. It improves the model
iteratively by learning the residuals from the previous model
at each step. The update of Gradient Boosting is performed
as,

Fm(x) = Fm−1(x) + η ·
n∑

i=1

∂L(y, F (x))

∂F (xi)
(3)

where Fm(x) is the model at the m-th boosting iteration, η is
the learning rate, ∂L(y,F (x))

∂F (xi)
is the gradient of the loss function.

Catboost algorithm uses ordered boosting, which is based on
Gradient Boosting. While traditional boosting algorithms learn
from all the data at once, ordered boosting modifies this by
creating predictions only from previously observed data in
each step instead of the model’s previous predictions. This
approach ensures that the actual values of the current data
point are not included in the training data, thus preventing
overfitting and data leakage. The formula for ordered boosting
can be expressed as,

Fm(xi) = Fm−1(xi) + η ·
i−1∑
j=1

∂L(yj , Fm−1(xj))

∂F (xj)
(4)

where xi is the i-th data point, Fm(xi) is the model at the m-
th boosting iteration for the i-th data point, η is the learning
rate, ∂L(yj ,Fm−1(xj))

∂F (xj)
is the gradient of the loss function.

The core algorithm of this study, the multioutput catboost
regressor, is an extension of the catboost model, capable of
predicting multioutput simultaneously instead of a single out-
put. This model is helpful in multioutput regression problems,
as it allows learning the correlations between multiple outputs.
Rather than learning individual models for each output, the
multioutput catboost regressor is designed to learn multiple
outputs together, enabling the model to capture shared patterns.
The model can be structured to train separate models for each
target or to build a model that simultaneously predicts multiple
outputs, reflecting the interrelationships between the outputs.
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The model predicts one output at a time in traditional single-
output regression. The general formulation for a single-output
model can be expressed as,

yi = f(X) + ϵi (5)

where yi is the single output, X represents the input data,
f(X) is the model function, ϵi denotes the prediction error.

On the other hand, the multioutput regression model predicts
multiple outputs simultaneously, capturing the correlations
between them. The formulation for a multioutput model can
be expressed as,

Y = f(X) + ϵ (6)

where Y = [y1, y2, . . . , yk] represents multiple outputs, X
represents the input data (shared across the outputs), f(X)
is the model function, and ϵ = [ϵ1, ϵ2, . . . , ϵk] denotes the
prediction errors for each output.

When applying multioutput, the loss function based on
NRMSE is calculated for each output y1, y2, . . . , yk and the
total loss is defined by averaging these NRMSE values. The
multioutput NRMSE loss function is expressed as,

L(y,F(x)) =
1

k

k∑
j=1

√
1
n

∑n
i=1(yi,j − ŷi,j)2

max(yj)−min(yj)
(7)

where k is the number of outputs, yi,j is the actual j-th target
value of the i-th data point, ŷi,j is the predicted value for
the j-th target, max(yj) and min(yj) are the maximum and
minimum values for the j-th target.

The gradient update of multioutput catboost for each output
can be expressed as,

Fm,j(x) = Fm−1,j(x) + η ·
n∑

i=1

∂L(y,F(x))

∂Fj(xi)
(8)

where Fm,j(x) is the model for the j-th target at the m-th
boosting iteration, ∂L(y,F(x))

∂Fj(xi)
is the gradient of the NRMSE

loss function for the j-th target.
The multioutput regressor predicts multiple outputs simulta-

neously using a single model, learning while considering the
relationships between the variables. In catboost, the internal
algorithm is extended to handle multidimensional outputs. The
multioutput loss function is the sum of the losses for each
output.

In conclusion, the critical difference between the traditional
catboost regressor and the multioutput catboost regressor is
that the former predicts a single output. In contrast, the latter
predicts multiple outputs, accounting for their correlations
during learning. This results in higher computational efficiency
than processing multiple outputs individually and reduces
training and prediction times. This advantage is beneficial in
environments where computational cost is critical, such as
large-scale RADAR manufacturing datasets.

In this paper, optuna is utilized to optimize the model’s
hyperparameters. Optuna is a framework employed for hyper-
parameter optimization that has played a crucial role in im-
proving the performance of multioutput catboost. Specifically,

Fig. 1. Correlation Heatmap of Features

Optuna’s Bayesian Optimization is utilized, which determines
the following hyperparameter values to try based on the
performance of previously tested values.Optuna optimizes the
model’s hyperparameters, focusing on the learning rate, max-
imum tree depth, number of estimators, and L2 regularization
coefficient. This process aims to minimize the MNRMSE,
allowing faster and more efficient model optimization than
manual tuning.

In this study, the RADAR dataset involves numerous fea-
tures. As illustrated in Fig. 1, a correlation heatmap is used
to visualize the relationships between these features, aiding in
the identification of highly correlated or redundant variables.
By addressing multi-collinearity, the study employs Principal
Component Analysis (PCA) to reduce highly correlated fea-
tures while preserving key information. This step assists in
streamlining the dataset and avoiding multi-collinearity issues,
contributing to more robust model performance.

To identify and remove insignificant features, including
categorical variables, the select features function of catboost
and shapley additive explanations (SHAP) values is used to
evaluate and select important features. This process allows the
model to retain only the most relevant features, improving pre-
diction accuracy. Fig. 2 shows the top 15 feature importances
according to catboost, demonstrating which features had the
greatest impact on the model’s predictions. The core principle
of the select features function is to iteratively retrain the model
while removing features and assessing their impact on model
performance. At each step, a feature is removed, the model is
retrained, and features with minimal impact on performance
are eliminated. This process is repeated until only the most
significant features remain.

SHAP values are based on game theory and quantify the
contribution of each feature to the model’s predictions. SHAP
calculates how each feature contributes across all possible
feature combinations, allowing the average contribution of
each feature to be determined. The formula for calculating
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Fig. 2. Top 15 CATBOOST Feature Importance

SHAP values can be expressed as,

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (9)

where ϕi is the SHAP value for feature i, N is the set of
all features, S is a subset of features excluding i, v(S) is
the value function, which represents the prediction made by
the model with the feature set S. SHAP values allow for a
clear interpretation of how much each feature contributes to the
model’s predictions. Features with lower average SHAP values
are considered less important and can be removed. By doing
so, features that do not significantly impact performance can
be eliminated, thereby reducing the complexity of the model.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

The dataset used in this study is based on manufacturing
process data collected to predict the performance of au-
tonomous driving RADAR systems. It consists of 39,607 sam-
ples, and each sample includes several process variables. Key
variables include the pressure applied during PCB assembly,
the weight and surface area of heat dissipation materials in
the RADAR system, the insertion depth of screws, and the
dimensions of the radome at antenna installation locations.
These variables are structured to evaluate the performance of
the RADAR system based on each measurement. The perfor-
mance evaluation items for the process data are composed of
56 categories, as shown in Table I.

While individual variables in dataset measure specific per-
formance factors, derived variables are essential to better
capture the correlations between variables. Derived variables
reflect the interactions between the base variables and con-
tribute to improving the predictive performance of the model.
This allows the model to predict RADAR performance.

Table II presents the specific derived variables used in the
dataset. For example, the derived variable ”weight/area” better
reflects heat management by considering both the weight and
surface area of the heat dissipation material, which plays a
crucial role in the RADAR system’s temperature management.
The weight-to-area ratio represents heat dissipation efficiency,
making it useful for evaluating the system’s performance

NO Description
1˜2 Stepwise pressing force during PCB assembly (Step 1, 2)
3 Weight of thermal material 1 [g]
4 Pass/fail result of first inspection (0/1)

5˜6 Stepwise pressing force during PCB assembly (Step 3, 4)
7˜9 Surface area of thermal materials 1, 2, 3 [cm²]

10˜11 Weight of thermal materials 2, 3
12 Reference coordinate of connector position
13 Height difference between antenna pads [cm]

14˜18 Positions of antenna pads 1, 2, 3, 4, 5
19˜22 Insertion depth of screws 1, 2, 3, 4

23 Pass/fail result of second inspection
24˜29 Pin dimensions of connectors 1, 2, 3, 4, 5, 6
30˜33 Insertion depth of screws 1, 2, 3, 4
34˜37 Rotation speed [RPM] during screw fastening 1, 2, 3, 4
38˜40 Dimensions of housing PCB mounting parts 1, 2, 3
41˜44 Radome dimensions at antenna locations 1, 2, 3, 4

45 Radome inclination at antenna section
46 Required amount of sealant bond
47 Pass/fail result of third inspection
48 Pass/fail result of fourth inspection
49 Waiting time before Cal procedure

50˜56 Solder amount at SMT locations of RF sections 1, 2, 3, 4, 5, 6, 7
TABLE I

RADAR SENSOR PROCESS EVALUATION PARAMETERS

Derived Variable Description
X03/X07 Weight/Area

X01 +X02 +X05 +X06 Total pressing force
max(X41 . . . X44) Radome dimension difference
X7 +X8 +X9 Total area

X3/(X19 +X20 +X21 +X22) Weight/Screw depth
X12/(X24, X25) coordinates and pin

TABLE II
DERIVED VARIABLES FOR FEATURE ENGINEERING

under heat-related stress during the manufacturing process. In
addition, the derived variable ”total pressing force” sums the
stepwise pressure values applied during PCB assembly, clearly
showing the impact of pressure on performance during assem-
bly. These derived variables reflect significant characteristics
of the data and provide insights that cannot be captured using
only the base variables. Based on the domain knowledge of
RADAR, several derived variables are generated from these
evaluation criteria. Additionally, categorical variables, such
as pass/fail results that do not influence the learning process
and features with insignificant correlations, are dropped. Fur-
thermore, the RADAR’s performance is determined according
to the acceptance criteria outlined in Table III, classifying
products as acceptable or defective.

B. Benchmarks

The following benchmarks are adopted to evaluate and
compare the performance of the proposed algorithm.

1) Random Forest (RF): RF is an ensemble learning tech-
nique that improves predictive performance by combining
multiple decision trees using the bagging method. The pre-
diction of each tree is defined as,

Ti(x) = f(x,Di), (10)

where Ti(x) is the prediction from the i-th tree, x represents
the input feature values, Di refers to the random sample of
data used to train the i-th tree. The final prediction is computed
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NO Description Acceptance Criteria
1 Antenna Gain Average (Angle 1) 0.2˜2
2 Antenna 1 Gain Deviation 0.2˜2.1
3 Antenna 2 Gain Deviation 0.2˜2.1
4 Average Signal-to-Noise Ratio 7˜19
5 Antenna Gain Average (Angle 2) 22˜36.5
6 Signal-to-Noise Ratio (Angle 1) -19.2˜19
7 Antenna Gain Average (Angle 3) 2.4˜4
8 Signal-to-Noise Ratio (Angle 2) -29.2˜-24
9 Signal-to-Noise Ratio (Angle 3) -29.2˜-24
10 Signal-to-Noise Ratio (Angle 4) -30.6˜-20
11 Antenna Gain Average (Angle 4) 19.6˜26.6
12 Signal-to-Noise Ratio (Angle 5) -29.2˜-24
13 Signal-to-Noise Ratio (Angle 6) -29.2˜-24
14 Signal-to-Noise Ratio (Angle 7) -29.2˜-24

TABLE III
RADAR PERFORMANCE CRITERIA

by averaging the predictions from decision trees, which can
be expressed as,

ŷ =
1

T

T∑
t=1

ft(x), (11)

where T is the number of trees, ft(x) is the prediction from
the t-th tree. RF trains each tree using random subsets of the
training data and random feature subsets, leading to diverse
learning outcomes for each tree. This process reduces the
correlation between the trees, thereby preventing overfitting
and improving the stability of predictions. However, since
it does not account for the correlations between outputs, it
demonstrates limited performance in multioutput problems
such as the RADAR performance prediction used in this study.

2) Multioutput Random Forest (Multi RF): The Multi RF
model, an extension of the traditional RF, has the advantage
of predicting multiple outputs simultaneously. However, since
each tree handles outputs independently, it fails to capture the
correlations between them. As a result, it also shows limited
performance in addressing multioutput problems, such as
the RADAR performance prediction in this study, leading to
suboptimal performance.

3) Xgboost (XGB): XGB is an improved version of the
Gradient Boosting algorithm. Traditional Gradient Boosting
lacks regularization techniques to control model complexity.
In contrast, XGB incorporates Lasso (L1) and Ridge (L2)
regularization to control complexity and prevent overfitting,
thus improving performance. XGB operates by learning from
the residuals at each stage, progressively refining the predic-
tion model. The fundamental loss function of XGB can be
expressed as,

L(y, ŷ) =

n∑
i=1

ℓ(yi, ŷi) +
T∑

t=1

Ω(ft) (12)

where L(y, ŷ) represents the loss function between the actual
values y and the predicted values ŷ, and ℓ(yi, ŷi) is the loss

function (e.g., NRMSE). The regularization term Ω(ft) can be
defined as,

Ω(ft) = γT +
1

2
λ||w||2 (13)

where γT is a penalty for the number of leaf nodes in the
tree, 1

2λ||w||
2 is the L2 regularization term on the weights

w. This regularization term controls model complexity and
prevents overfitting. XGB improves the prediction iteratively
by adding the output of each tree to the previous predictions:

ŷ
(m)
i = ŷ

(m−1)
i + fm(xi) (14)

where ŷ
(m)
i is the prediction at the m-th boosting iteration,

and fm(xi) is the prediction model learned from the m-th
tree. Through this iterative process, the model’s performance
is continuously refined. XGB controls model complexity
through regularization and prevents overfitting, thereby
providing better predictive performance. However, XGB
independently learns each output, which means it does not
capture the correlations between the outputs. While XGB
reduces residual errors by adding new trees at each stage,
this process is carried out only for a single output at a
time. Consequently, in multioutput problems, it fails to
learn the interactions between outputs and does not account
for complex relationships among them. This limitation
results in reduced performance in the case of the RADAR
performance prediction model, as it cannot effectively reflect
the relationships between the multiple outputs.

4) Multioutput XGBoost (Multi XGB): The Multi XGB
model is an extension of the original XGB, offering the advan-
tage of predicting multiple outputs simultaneously. By com-
bining XGB’s robust performance with multioutput handling,
this model eliminates the need to learn each output separately,
allowing for efficient batch prediction. However, Multi XGB
still does not explicitly learn the correlations between outputs
and processes each target independently. This independent
structure limits the model’s performance when variables need
to be considered interdependently. Such a limitation can lead to
suboptimal performance, particularly in multioutput problems
like RADAR performance prediction, where interactions and
correlations between outputs are crucial.As a result, while
Multi XGB excels in efficiently handling multiple outputs,
its inability to capture relationships between outputs can
restrict its predictive performance in scenarios where such
relationships play a significant role.

C. Results

In this study, a total of six models are used to evaluate per-
formance. These models are divided into two groups: models
with and without the application of multioutput regression,
each comprising RF, XGB, and CAT models. By comparing
the models equipped with multioutput capabilities to those that
handled outputs individually, the impact of predicting multiple
outputs simultaneously is assessed in contrast to individual
predictions. This approach enables a comprehensive evaluation
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Fig. 3. MNRMSE Comparison of Models with Values

of how multioutput regression improves predictive accuracy
across various model architectures.

As shown in Fig. 3, MNRMSE values for each model
are 1.9487 for Multi RF, 1.9543 for RF, 1.9355 for Multi
XGB, 1.9395 for XGB, 1.9307 for Multi Cat, and 1.9367 for
Cat. The models with multioutput regression show MNRMSE
values up to 0.006 smaller than their corresponding single-
output models. There are several reasons for this perfor-
mance improvement. First, multioutput regression effectively
captures potential correlations between outputs by learning
them simultaneously. Single-output models predict each target
independently, thus ignoring the interactions between targets.
However, Multioutput regression captures these relationships,
leading to improved predictive performance, which is reflected
in the smaller NRMSE values. Another key factor contributing
to this performance improvement is the reduction of data re-
dundancy. Instead of training separate models for each output,
multioutput regression processes the shared information across
multiple outputs, reducing redundant data learning. By stream-
lining the learning process and integrating diverse information
and features, the model can avoid overfitting and achieve better
generalization. This reduction in data redundancy contributes
significantly to lower the MNRMSE values.

Among the RF, XGB, and CAT models, CAT consistently
demonstrates superior performance. This can be attributed to
differences in the algorithm’s methods. RF, which employs
a bagging approach, trains several independent decision trees
but likely struggles to capture the correlations between targets
in the RADAR dataset. Both XGB and CAT utilize the Gra-
dient Boosting algorithm; however, catboost’s use of ordered
boosting helps prevent data leakage, which contributed to its
more pronounced performance improvement.

V. CONCLUDING REMARK

The purpose of this study is to apply multioutput machine
learning models to predict and analyze RADAR defects using

actual process data, ultimately maximizing yield. The anal-
ysis of various regression models demonstrates that multi-
output regression effectively reduces errors by learning the
correlations between outputs. In advanced technologies like
RADAR, which feature diverse characteristics, the benefits
of multioutput regression are particularly pronounced. This
is because multioutput regression captures the relationships
between targets more effectively, reduces redundant data learn-
ing, and integrates various information, preventing overfitting.
These advantages are most evident in catboost, as its algo-
rithm structure is well-suited for handling correlated outputs.
Additionally, the use of the ordered boosting technique, which
prevents data leakage, further contributes to catboost’s superior
performance in RADAR performance prediction tasks. As
shown in fig. 3, the MNRMSE of the multioutput catboost
regressor is 1.9307, which is 0.0236 smaller compared to other
models, underscoring the importance of effectively learning
target relationships. Future research will focus on incorporat-
ing more comprehensive process data and improving model
accuracy through hyperparameter optimization. Moreover, ap-
plying these models across various industries is recommended
to ultimately enhance production yields and reduce costs.
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