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Abstract—With the development of aerospace technology, the
cost of deploying low Earth orbit (LEO) satellites is decreasing.
LEO satellites can provide low latency and high throughput
networks on a global scale. Recently, LEO satellite networks
are discussed to provide network services for user equipments
(UEs) in airplanes. However, both airplanes and LEO satellites
are moving rapidly, resulting in dynamic changes to the network
topology. This work proposes an efficient handover strategy based
on deep reinforcement learning to achieve seamless network
service in this scenario. In this approach, fast-moving devices
(e.g., airplanes) are treated as agents that learn to adapt to
changes in the network environment. The designed Deep Q-
Network (DQN) model determines suitable handover trigger
timings and target satellites for these fast-moving devices, guided
by comprehensive reward functions that considers multiple per-
formance metrics. Simulation results indicate that, the proposed
scheme can significantly enhance network throughput and reduce
latency.

Index Terms—deep reinforcement learning, handover decision,
low earth orbit (LEO) satellite network, multi-agent

I. INTRODUCTION

In recent years, low Earth orbit (LEO) satellite networks
have attracted significant attention in both industry and
academia [1]. LEO satellites operate at altitudes ranging
from approximately 800 to 2000 km. Most LEO satellites
function in the Ku-band (12-18 GHz) and Ka-band (26.5-
40 GHz), which enable real-time, high-throughput wireless
communication. Fig. 1 illustrates a LEO satellite network. In
this network, LEO satellites can be interconnected via inter-
satellite links (ISLs). A device (or say user equipment) can
connect to a host satellite to access network services. The
host satellite relays data through ISLs and then connects to
the Internet through a ground station.

Relative to the ground, LEO satellites move at high speeds.
Therefore, when connecting to a LEO satellite network, a
static user equipment (UE) must perform handovers period-
ically. Recently, LEO satellite networks have been explored to
provide communication services for UEs in airplanes. Given
the rapid movement of airplanes, the handover will frequently
happen in this scenario. To minimize interruptions and enhance
the quality of communication, designing an efficient handover
mechanism is important in this network scenario.

Most previous handover schemes in LEO satellite networks
are designed for user equipment (UE) on the ground. Typically,
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Fig. 1. A LEO satellite network.

when a UE connects to a satellite, a handover procedure
is triggered when the elevation angle between the UE and
the satellite falls below a predefined threshold. However, this
handover triggering condition can be easily activated when
applied to fast-moving devices, such as airplanes. For example,
in Fig. 1, the airplane a1 initially connects to satellite s1.
Assume that s1 moves to the left while a1 moves to the
right. In this scenario, the elevation angle between s1 and a1
changes rapidly, degrading from θ1 to θ′1. As a result, a1 will
trigger a handover procedure within a short period. From this
example, it is evident that handovers may be triggered easily
and frequently in such scenarios. Therefore, this work aims to
decide (i) the suitable handover timing and (ii) the appropriate
handover target for fast-moving devices.

In this paper, we propose a handover strategy based on
deep reinforcement learning (DRL) techniques. The proposed
approach employs two deep Q-networks (DQNs) to determine
handover trigger timing and handover targets, respectively.
First, the DQN for determining handover trigger timing con-
siders changes in the network topology and identifies whether
the link quality of the connected satellite is likely to degrade.
Second, the DQN for selecting the host satellite evaluates
multiple metrics, including visibility time, elevation angle,
load of satellite, and hop count distance to the ground station.
The simulation results indicate that the proposed scheme can
effectively increase network throughput and reduce latency.
The contributions of this work are summarized as follows:

• The proposed scheme accounts for changes in the net-
work environment to trigger handovers by considering
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the characteristics of fast-moving devices.
• The proposed method incorporates multiple metrics when

selecting the target satellite. These metrics help stabilize
the link to the satellite and reduce the hop count distance
to the ground station.

• To the best of our knowledge, this is the first work to
propose a handover scheme specifically for fast-moving
devices in LEO satellite networks.

The remainder of this paper is organized as follows. Sec-
tion II and Section III review some previous works and basic
concepts of deep reinforcement learning, respectively. Then,
Section IV introduces the proposed handover strategy. Next,
Section V illustrates the simulation results. Finally, Section VI
concludes this paper.

II. RELATED WORKS

In previous studies, reference [2] introduces key selection
metrics for making handover decisions. These metrics include
visibility time, elevation angle, and the number of free avail-
able channels. References [3], [4] propose methods to improve
communication quality using different selection metrics. The
authors in reference [3] design a graph-based satellite handover
framework. This framework models the overlapping period
of the satellite as nodes and the possible handovers between
two overlapping periods as edges. Handover decisions can
then be implemented by finding a path in the constructed
directed graph. Reference [4] proposes a centralized handover
strategy controlled by ground stations. The proposed method
establishes a network flow model that considers users’ require-
ments, allowing handover decisions to be made by finding the
maximum flow in the network to satisfy multiple requirements.
Both [3] and [4] achieve their objectives, but their schemes
only consider single metrics when making handover decisions.
Furthermore, references [5]–[7] design handover schemes by
considering multiple metrics. For instance, reference [5] de-
velops a strategy based on a weighted bipartite graph, which
assigns weights based on satellites’ qualities (including chan-
nel quality, remaining service time, satellite load, and power
allocation). Although this scheme effectively makes handover
decisions, it incurs high computational overhead. Reference
[6] proposes a handover scheme for LEO networks using deep
reinforcement learning. A deep Q-network (DQN) is utilized
to solve a multi-objective optimization problem. However,
this handover scheme requires periodic execution, leading to
unnecessary computations. Reference [7] adopts a multi-agent
reinforcement learning approach for handover. The designed
scheme considers satellite load constraints while aims to re-
duce the number of handovers. However, the designed method
has high computational complexity. In summary, in references
[2]–[7], some works only consider single metrics when making
handover decision, and some works incur high computational
complexity when making handover decisions.

III. DEEP REINFORCEMENT LEARNING (DRL) CONCEPT

Reinforcement learning (RL) is a branch of machine learn-
ing. In RL, an agent interacts with an environment to learn

optimal actions, which can maximize cumulative long-term
rewards. The RL involves four key components, i.e., states,
actions, rewards, and policies. Based on the current state,
an agent takes actions, and then the environment responds
with a new state and a reward. Moreover, the Q-learning is a
value-based RL algorithm, which aims to learn an action-value
function, known as the Q-function. The Q-function estimates
the expected long-term return from taking a specific action in
a given state. Legacy Q-learning adopts a Q-table to store and
update Q-values for all possible state-action pairs. However, as
environments become more complex, it becomes impractical to
use Q-table due to the exponential growth in state-action pairs.
Therefore, the Deep Q-Networks (DQN), which adopts deep
neural networks to approximate the Q-function, is proposed to
handle large-scale and complex environments.

Instead of storing Q-values in a table, DQN uses a neural
network to approximate the Q-function, which estimates the
expected future rewards for each possible action given a state.
Then, the agent can select the action with the highest Q-value.
DQN stores past experiences (state, action, reward, next state)
in a replay buffer. Then, it can randomly samples from this
buffer to break temporal correlations between experiences. To
prevent instability, DQN uses a primary network for learning
and a target network for generating target Q-values. The
target network will be updated periodically to stabilize the
training process. During training, the agent can adopt an ϵ-
greedy policy to balance exploration (trying new actions) and
exploitation (choosing the best-known actions). This strategy
facilitates learning and prevents convergence to suboptimal.
By integrating the above techniques, DQN achieves efficient
learning in complex environments.

IV. THE PROPOSED SCHEME

In this work, we assume that a fast-moving object (e.g.,
an airplane) is represented as an agent a, which is covered
by at least one satellite. The agent a can select a satellite as
the host satellite to access the Internet. In the proposed DRL-
based scheme, two DQNs are employed: one is to determine
whether to trigger a handover and the other is to select the
host satellite.

A. DQN for Deciding Handover Triggering Time

In this DQN, the primary goal is to determine the optimal
handover timing. Below, we introduce the state, action, and
reward function. First, for an agent a at a time instant t, the
system uses the following four parameters as the state:

• ha
o : This parameter records the initial hop count distance

from its host satellite to the ground station.
• θao : This parameter records the initial elevation angle of

a to its host satellite.
• ha

t : This parameter represents the current hop count
distance from its host satellite to the ground station.

• θat : This parameter represents the elevation angle of a to
its host satellite.

Then, the action for the agent a can be “trigger handover” or
”not trigger”.
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Next, we introduce the design of our reward function. The
reward function takes into account changes in both elevation
angle and hop count distance. The idea is that when the
hop count distance to the ground station increases or the
elevation angle to the host satellite decreases, it implies that
the network condition to the host satellite becomes worse. In
such cases, if a handover is triggered, the reward should be
higher. Conversely, if the network condition is still satisfactory
but a handover is triggered, a negative reward will be assigned.
To evaluate the changes in the network conditions, we define
the following two parameters:

• Ratio of hop count distance change

rhop =
ha
t − ha

o

ha
o

.

• Rate of elevation angle change

rangle =
θao − θat

θao
.

We can see that the ratios of hop count and elevation angle
change are used to evaluate the current network condition
compared to the original state when connected to the host
satellite. It is important to note that when a handover occurs,
an agent aims to select a new host satellite that has a shorter
hop count distance to the ground station and a higher elevation
angle. Therefore, if the ratios become large, it indicates that
the network condition becomes worse. The reward function,
which assigns reward values based on whether a handover is
triggered, is defined as follows:

• If a handover is triggered, the reward will be

(rhop + rangle).

• Otherwise, the reward will be

(1− (rhop + rangle)).

Based on this design, a large value of (rhop + rangle) implies
a deteriorating network condition, and thus a higher reward
for the DQN after making a handover decision should be
given. This design effectively encourages triggering a han-
dover in scenarios where the network condition is degrading.
Conversely, if a handover is not triggered, the reward is
higher when (rhop + rangle) is smaller. A small value of
(rhop+rangle) implies a stable network; as a result, a handover
is unnecessary.

B. DQN for Selecting Host Satellite

When an agent decides to perform a handover, it will select
a new host satellite from a list of its candidate satellites.
Assuming an agent a, the set Ca

t represents the candidate
satellites available to agent a at time t. In this work, agent a
considers its nearby m line-of-sight satellites that have larger
elevation angles as its candidate satellites. At time instant t,
for a candidate satellite s ∈ Ca

t , the agent a will maintain the
following information: (i) elevation angle to s, say θa,st , and
(ii) visibility time of s, say V a,s

t . Additionally, the agent a
maintains a set Na

t , which records the list of nearby agents

and their corresponding host satellites, and the its hop count
distance to the ground station, say ha

t . In our design, the state
of agent a will encompass the following three components:

• The list of candidate satellites and the associated in-
formation (visibility time and elevation angle) for each
candidate satellite.

• The set Na
t .

• The value ha
t .

In this DQN, the action of a includes selecting any of the
candidate satellites in Ca

t .
After selecting a new host satellite, the reward function is

listed as below:

1

1

re
+

1

rv
+

1

1− rh
+

1

1− rc

. (1)

In Eq. (1), we utilize the harmonic mean to define our reward
function, which helps mitigate the influence of extreme values.
The values of re, rv , rh, and rc are normalized to fall within
the range (0, 1). In the reward function, re and rv represent
the rewards associated with the observed elevation angle and
visibility time to the new host satellite, respectively. We can
observe that higher values of re and rv lead to a larger reward.
The parameter rh represents the reward for the hop count
distance from the new host satellite to the ground station.
Thus, when the hop count distance is lower, the reward is
higher. Finally, rc records the number of served agents at the
new host satellite. In other words, if a satellite serves more
agents, the value of rc will be lower. Based on our design, the
reward increases when rc is lower. This approach ensures that
the load on the selected host satellite remains manageable.

V. SIMULATION RESULTS

This work utilizes Python and the General Mission Analysis
Tool (GMAT) [8] to simulate the environment of LEO satellite
networks. In our simulation, satellites are deployed using
the walker star constellation and walker delta constellation.
Each orbit plane consists of 11 satellites, which are uniformly
distributed. The detailed simulation parameters are presented
in Table I. Initially, the simulation program loads data for
the agent (i.e., airplane) and the satellites. The movement
of the agent takes into account real airport locations; for
example, airplanes might start their journey from a starting
airport (e.g., Bangkok) to a destination airport (e.g., Los
Angeles). The simulation program continuously updates the
locations of the satellites using planetary ephemeris data. With
this location information, the program evaluates the elevation
angles between the agents and the satellites. Additionally, the
simulation deploys 25 ground stations and continuously up-
dates the routing paths for the satellites. Each satellite employs
the A* algorithm to determine the routing path that minimizes
the hop count distance to a ground station. Moreover, Table II
presents the DQN parameters used in our design. Most of these
two DQN models share similar configurations; however, the
DQN for selecting the host satellite incorporates more hidden
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TABLE I
SIMULATION PARAMETERS.

Parameter Value
Orbital planes 12

Satellite per orbital planes 11
Orbital inclination [86.4◦, 60◦, 120◦]

Orbital altitude 780 km
Minimum elevation angle 10◦

Center frequency 30 GHz
Antenna transmission power 30 dBm

Tx antenna gain 30 dBi
Rx antenna gain 40 dBi
Center frequency 30 GHz

Bandwidth 10 MHz
System noise temperature 290 K

Boltzmann constant 1.38−23 J/K

TABLE II
DQN MODEL PARAMETERS

Parameter Selecting host Deciding handover
satellite triggering time

State space size 24 4
Action space size 4 2

Hidden layers 2 2
Hidden layer nodes 128 64

Conv layers 4 -
γ 0.99 0.99

ϵ-start 1.0 1.0
ϵ-end 0.01 0.01
ϵ-decay 0.995 0.995

α 0.0001 0.001
β 0.01 -

Optimizer Adam Adam
Loss function HuberLoss MSE

Dropout 0.2 -

layer nodes and utilizes the HuberLoss function to mitigate
noise and outliers.

In this work, we compare the proposed scheme (denoted by
OUR) with three host satellite selection strategies (as listed
in [2], [9], [10]): (i) selecting the satellite with the maximum
elevation angle (denoted by MEA), (ii) selecting the satellite
with the longest visibility time (denoted by MVT), and (iii)
selecting the satellite with the most free available channels
(denoted by FAC). Note that in the MEA, MVT, and FAC
strategies, an agent will trigger a handover when the observed
elevation angle to its host satellite falls below 10 degrees.

Fig. 2 illustrates the average throughput between agents and
their host satellites. We can observe that OUR outperforms
the other three methods. Compared to MEA, MVT, and FAC,
OUR achieves throughput increases of 3.65%, 4.17%, and
4.55%, respectively. This improvement is attributed to the
joint consideration of multiple metrics when selecting host
satellites, which enhances signal quality and visibility time.
Next, Fig. 3 presents the average system throughput, measured
between agents and ground stations. The system throughput
can be influenced by ISLs between intermediate satellites. The
results indicate that the system throughput is nearly consistent
with the previous findings, and OUR continues to outperform
the other methods. Generally, system throughput increases

Fig. 2. Simulation result on throughput between agent and satellite.

Fig. 3. Simulation result on system throughput.

proportionally with the number of agents. However, as the
number of agents increases from 250 to 300, OUR demon-
strates a more significant increase in throughput. This result
demonstrates that the proposed strategy effectively facilitates
communication between agents and ground stations.

Next, Fig. 4 presents the average hop count distance to
the ground stations. Compared to MEA, MVT, and FAC,
OUR can reduce hop count distance by 4.07%, 5.85%, and
11.94%, respectively. These results demonstrate that the de-
signed policy effectively selects host satellites for agents,
allowing OUR to reduce communication latency for agents.
Moreover, Fig. 5 illustrates the average number of triggered
handovers. Note that the MVT method selects the host satellite

Fig. 4. Simulation result on hop count distance to ground stations.
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Fig. 5. Simulation result on average number of triggered handovers.

Fig. 6. Simulation results on Jain’s fairness on the loads of satellites.

with longer visibility time, which consequently reduces the
frequency of handovers. In contrast, OUR may induce more
handover procedures; however, as mentioned earlier, OUR
provides higher throughput and lower latency. Additionally,
OUR triggers handovers before the elevation angles become
too small, helping to preserve connections between agents and
satellites.

Fig. 6 illustrates Jain’s fairness regarding the loads of
satellites. Let xi represent the number of times that a satellite
si is selected as the host satellite. The equation to derive
fairness is given by:

J(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

.

According to this equation, the result of the above equation
ranges from 0 to 1. A result closer to 1 indicates a more
equitable distribution of network load among satellites. From
the results, we observe that the FAC method allows more
equally sharing of network load. However, this fairness comes
at the expense of performance (i.e., throughput and hop count
distance), which is lower compared to other methods. In
contrast, when compared to MEA and MVT, OUR improves
network throughput and hop count distance while maintaining
a more balanced load across satellites.

In summary, the simulation results indicate that OUR can
enhance network performance in expense of triggering slightly
more handovers. Additionally, the results demonstrate that
the designed DQNs operate effectively in managing handover

decisions and host satellite selections, leading to improved
overall system performance.

VI. CONCLUSIONS

In this work, we propose a handover strategy for fast-
moving devices in a LEO satellite network utilizing DRL.
The designed strategy jointly considers several metrics, in-
cluding elevation angle, visibility time, hop count distance,
neighbor status, and changes in the network environment. We
implement two DQNs for agents to determine handover trig-
gering times and select host satellites. The simulation results
demonstrate that the proposed method effectively improves
network throughput and reduces latency. In the future, we plan
to further optimize our DQN models, collect more training
datasets, and incorporate additional metrics into our models.
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