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Abstract—Lower production costs have inspired studies on
unmanned aerial vehicles (UAV) for wireless communication.
However, limited transmission power and size of the UAV make
it challenging to use advanced communication models while
meeting the growing need for high data rates and energy
efficiency (EE). In this paper, we study an energy-efficient UAV
network enhanced by an intelligent reflecting surface (IRS) with
simultaneous wireless information and power transfer (SWIPT),
where the IRS is employed to improve the EE of ground user
equipment (GUE). The goal is to maximize the average EE by
jointly controlling the UAV’s flying route, IRS phase steer, UAV
transmission power, and power splitting (PS) ratio of the energy
transfer technology. The formulated problem of maximizing the
average EE is non-convex and thus challenging to be solved.
To address this problem, we propose a deep reinforcement
learning (DRL) approach. The modified reward function is
implemented to enhance the efficiency of the DRL agent, which
is formulated based on the expected signal-to-interference-plus-
noise ratio (SINR) map. Simulation results demonstrate that the
proposed DRL algorithm achieves lower energy consumption,
higher data rate, and improved EE compared to the comparison
algorithm.

Index Terms—Intelligent reflecting surface, unmanned aerial
vehicle, deep reinforcement learning, energy transfer.

I. INTRODUCTION

UAV-aided data delivery is an important communication
technology in Internet of Things (IoT) environments. This is
because it can reduce the energy consumption of IoT devices
by positioning the UAV near low-battery devices, thereby
prolonging the network lifetime. As opposed to the ground
base station (BS) that is always supplied with reliable energy
source, UAVs cannot obtain energy while flying. Additionally,
the location of the UAV can impact the energy consumption
of both the ground device and the UAV itself. Therefore,
careful trajectory planning and transmission power control are
required to satisfy the increasing demands for high data rate
and energy efficiency (EE) [2].

Recently, intelligent reflecting surface (IRS) has emerged as
a highly promising and innovative communication paradigm
within the area of wireless networks. Using IRS in UAV
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networks can extensively improve the communication range
of the UAV without using a significant amount of energy.
In addition, IRS enables passive beamforming, which mitig-
ates high RF signal attenuation and establishes an effective
transmission beam to ground devices. These capabilities to
manage the wireless environment offer distinct advantages
in addressing various challenges in wireless communications,
such as improving spectrum efficiency and EE [4].

On the other hand, IoT networks primarily consist of
wireless nodes that are geographically dispersed or spatially
spread out, such as sensor nodes and device-to-device com-
munications. One challenging issue for these networks is
lowering energy usage and prolonging the lifespan of the
network. Because battery replacement or regular recharging
can be costly and inconvenient, harvesting energy from the
surrounding environment is regarded as a sustainable way to
offset the energy consumption of the devices [5]. Specifically,
UAV-enabled wireless energy transfer holds great potential
as it offers the flexibility to efficiently cover a specific area
by dynamically adjusting source-to-destination distance. This
adaptability allows for meeting the energy requirements of
diverse nodes and enhancing energy harvesting efficiency.
Furthermore, it is noted that the EE of an IoT network can
be further enhanced by integration of wireless power transfer
(WPT) technology into the IRS-aided UAV network platform.

Our optimization approach introduces the SINR map, a
key measure of communication quality and energy efficiency,
specifically defined for the DRL reward function. Integrating
the SINR map with learning-based algorithm such as DRL
allows for smoother training, increased stability and better
adaptation to complex environment, which we will describe
in more detail in Section III.

In this work, we focus on enhancing the average EE of
IRS-assisted UAV networks within a simultaneous wireless
information and power transfer (SWIPT) framework. Our
work aims to maximize the average EE of the GUEs by
simultaneously optimizing the UAV flying route, transmission
power, IRS phase steer, and power splitting (PS) ratio in a
IRS-aided UAV WPT network. The key contributions of this
paper are outlined as follows:

• We construct a system model of the IRS-aided UAV com-
munication system equipped with SWIPT functionality
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for IoT network, where a UAV can transfer energy to
IoT devices and offer services at the same time. From the
channel model for the UAV with an IRS and the energy
model of the GUE, we develop an optimization problem
of maximizing the average EE of the IRS-assisted UAV
WPT network with decision variables of the UAV flying
route, transmission power, IRS phase steer, and energy
harvesting ratio of SWIPT functionality.

• To solve this optimization problem with very high com-
putational complexity, we propose a deep reinforcement
learning (DRL) algorithm. The proposed DRL algorithm
introduces the concept of the SINR map (the average
SINR of the UAV over the GUEs in the given network).
From the SINR map, we construct the reward function
using bivariate normal distribution in the proposed DRL
algorithm.

• It is verified that the proposed DRL algorithm enhances
the performance of the UAV in that it consumes less
energy on average and maintains high data rate compared
to the comparison schemes. Also, the results verify that
using a UAV equipped with IRS functionality can sig-
nificantly reduces the energy consumption of nodes in a
network.

It is noted that our study is distinguished from previous
studies on the UAV-IRS communication system [6]–[8] in that
it combines energy harvesting functionality of SWIPT with
IRS-aided UAV communications to increase the EE of the
network system, and apply the DRL algorithm to address the
non-convexity in the proposed optimization problem with low
computational complexity.

II. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

A. System Architecture
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Figure 1. System model of the IRS-aided UAV communication network with
energy transfer

We consider a single-antenna aerial-BS UAV serving a set
of m = {1, 2, ...,M} users, providing downlink communic-

ations within a considered area, as shown in Fig. 1. A GUE
receives information and energy at the same instant due to the
embedded SWIPT technology. In our assumption, we utilize
a 3D Cartesian coordinate such that the location of the GUE
m is fixed at qm = [xm, ym, 0]T . The initial flying location
of the UAV is qui = [x0, y0, h0]

T . We deploy one single IRS
with multiple steerable elements which it is mounted fixed
at qr = [xr, yr, hr]

T . The IRS consists of Nr × Nc passive
reflecting element (PRE), which are consistently arranged as
a uniform planar array (UPA), with Nr and Nc be the number
of IRS unit in row and column, respectively. The UPA is
structured such that each column contains PREs that are
equidistant from each other, with a separation of sc meters.
Similarly, the UPA is composed of PREs arranged in rows
that are equidistant, with a spacing of sr meters. The UPA
allows each PRE to independently re-scatter the incoming
signal, and this process is characterized by a reflection coef-
ficient comprising an amplitude a ranging from 0 to 1 and
a phase steer θnr,nc ∈ [0, 2π], i.e. rnr,nc = aej(θnr,nc ),
∀nr ∈ {1, 2, . . . , Nr}, and ∀nc ∈ {1, 2, . . . , Nc}. In this paper
we use fixed a = 1, and phase steer θnr,nc

can be modified
by the IRS decision maker.

B. Channel Model for UAV data delivery with IRS

The UAV is dispatched to provide services to all GUEs. Un-
like traditional ground-based networks, where Rayleigh fading
is commonly employed for small-scale fading, Rician fading
is deemed more suitable for UAV-ground communications.
This choice is justified by the typically prevalent Line-of-
Sight (LoS) channel component and the occurrence of local
scattering in UAV-ground communication scenarios. Thus,
we utilize the channel model of Rician fading for both the
UAV-GUE link and the IRS-GUE link. By considering the
substantial signal attenuation and loss in reflection, we assume
that signals reflected by the IRS two or more times have
minimal power and are consequently disregarded. The channel
between the UAV and the GUE m can be described as

hum[t] =

√︄
β0

dαum
um [t]

(︄√︃
κ

κ+ 1
+

√︃
1

1 + κ
h̃um[t]

)︄
, (1)

here, αum is the path loss factor specifically associated with
the link of the UAV to the GUE m. The Rician factor is
denoted as κ, and h̃um[t] ∼ CN (0, 1) represents the scattering
element of GUE m during time slot t, following a complex
circularly symmetric Gaussian distribution with zero mean
and unit variance. At time t, the channel representing the
communication of the UAV-IRS link is expressed as

H[t] =

√︄
β0

d2ur[t]
H̃[t], (2)

where β0 is gain at d0 = 1m reference distance, and H̃[t]
is the LoS channel of the UAV-GUE link, given in (7). We
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denote θur[t], ζur[t] and z as the angle-of-arrivals at the IRS,
and the height of the UAV, respectively, where

sin θur[t] =
z − hr

dur[n]
, (3)

sin ζur[t] =
xr − x[t]√︁

(xr − x[t])2 + (yr − y[t])2
, (4)

cos ζur[t] =
y[n]− yr√︁

(xr − x[t])2 + (yr − y[t])2
. (5)

At time slot t, the channel model from the IRS to the GUE
m is described as

hrm[t] =

√︄
β0

dαrm
rm [t]

(︄√︃
κ

κ+ 1
hLoS
rm [t] +

√︃
1

1 + κ
h̃rm[t]

)︄
,

(6)

where h̃rm[t] ∼ CN (0, INrNc
), INrNc

is the covariance
matrix, and hLoS

rm [t] is given by (8). The reflector coefficient
of the IRS at time slot t is described by

Θ[t] = diag(θ[t]) ∈ CNrNc×NrNc , (9)

where θ[t] = [ejθ1,1 [t], ..., ejθnr,nc [t], ..., ejθNr,Nc [t]]T ∈
CNrNc×1. The composite of the UAV-GUE channel can be
formulated as

hH
m[t] ≜ hH

rm[t]Θ[t]H[t] + hH
um[t]. (10)

Because of the scattering elements present in the Rician fading
channels described in equations (1) and (6), the overall channel
becomes probabilistic in nature. To ensure effective control
over the IRS phase for coherent signal composition at the GUE
and to facilitate UAV route planning, it is necessary to ap-
proximate and provide real-time channel information between
the PRE, UAV, and the individual GUE. This information is
essential to be shared with the central decision maker of both
the IRS and the UAV during the entire flight operation.

C. Energy Model for IRS-aided UAV data delivery

In our work, we consider the SWIPT-equipped GUE using
PS technique. With the PS ratio ρm, the GUE can exploit
energy and information signal at the same instant with the
received SINR at the GUE m, which can be written as

SINRm[t] =
ρmpm[t]|hH

m[t]|2

ρm
∑︁

m′ ̸=m pm′ [t]|hH
m′ [t]|2 + σ2

m

, (11)

where pm and σm are the received power and noise, respect-
ively, at the GUE m. The energy dissipation of the GUE m
can be described as

EDm[t] =Pc + pm − (1− ρm)
(︁
pm[t]|hH

m[t]|2

+
∑︂

m′ ̸=m

pm′ [t]|hH
m′ [t]|2

)︁
, (12)

where Pc is the circuit power consumption and (1 −
ρm)pm[t]|hH

m[t]|2 is the energy signal received at the GUE
m. Therefore, we can express the data rate received at the
GUE m as

Rm[t] = log(1 + SINRm[t]). (13)

D. Problem Formulation

From (11) and (12), we define the EE at the GUE m as

EEm(qu, ρm, pm,Θ)[t] =
Rm(qu, ρm, pm,Θ)[t]

EDm(qu, ρm, pm,Θ)[t]
. (14)

Accordingly, we formulate a problem that simultaneously
optimizes the route planning of the UAV, PS ratio, transmission
power, and IRS phase steer to maximize the average EE which
can be described as

max
qu,ρm,pm,Θ

1

M

M∑︂
m=1

EEm(qu, ρm, pm,Θ)[t] (15)

s.t. C1 : pm[t] ≤ pmax, (16)
C2 : 0 ≤ Θ[t] ≤ 2π, (17)
C3 : 0 < ρm[t] ≤ 1, (18)
C4 : ∥qu[t+ 1]− qu[t]∥ ≤ Dmax, ∀t, (19)

where constraints C1, C2, C3 indicate that the power cannot
exceed the maximum power, phase steer is within the range of
[0, 2π], and the PS ratio is in range of [0, 1], respectively. In
addition, constraint C4 defines the displacement of the UAV
from one location at time slot t to the next location at time
slot t + 1. The optimization problem becomes non-convex
since all constraints exhibit non-linear relationships with the
control variables. In our work, we handle high-dimensional
control parameters such as the route planning of the UAV,
PS ratio, transmission power allocation, and IRS phase steer
in dynamic environment. This justifies the use of DRL with
reduced computational complexity.

H̃[t] =
[︂
1, e−j2πd

sin θur [t] cos ζur [t]
λ , ..., e−j2πd(Nr−1)

sin θur [t] cos ζur [t]
λ

]︂T

×
[︂
1, e−j2πd

sin θur [t] sin ζur [t]
λ , ..., e−j2πd(Nc−1)

sin θur [t] sin ζur [t]
λ

]︂T
(7)

hLoS
rm =

[︂
1, e−j2πd

sin θrm[t] cos ζrm[t]
λ , ..., e−j2πd(Nr−1)

sin θrm[t] cos ζrm[t]
λ

]︂T

×
[︂
1, e−j2πd

sin θrm[t] sin ζrm[t]
λ , ..., e−j2πd(Nc−1)

sin θrm[t] sin ζrm[t]
λ

]︂T
(8)
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III. PROPOSED ALGORITHM

Reinforcement learning agents utilize Q-learning to discover
effective strategies through environmental exploration. Each
decision yields rewards, and the agent strives to develop a
strategy that yields the highest long-term value when consid-
ering future discounted rewards. We represent the expected
cumulative reward as Qπ(s, a), which evaluates how beneficial
it is to take action a at state st while following strategy π.
The core challenge is identifying the supreme action values,
denoted as Q∗(s, a) = maxπ Q

π(s, a), which lead to optimal
decision-making. To track these learned values, the algorithm
maintains a lookup matrix called the Q-table that maps each
state-action combination to its estimated worth.

At each time slot t, The Q-value is computed based on the
present state and the action chosen in the previous step. The
recorded value is kept in a Q-function, which plays a crucial
role in determining the policy Π. Through DRL, the agent
learns to make decisions that optimize long-term aggregate
benefits instead of just pursuing short-term gains.

Environment

Experience 
Replay Memory

GUE location

IRS location

IRS phase-steer

UAV position

Power allocation

Power splitting ratio

State

Agent

Take action

Pr
ed

ic
tin

g

Reward

Tr
ai

ni
ng

Figure 2. Proposed DRL model

During each time slot t, the Q-value and Q-function are
continuously updated based on the current state, previous
actions, and received reward to enhance the agent’s decision-
making. This update process is performed using the equation
as follows

Qt+1(st, at) ← Qt(st, at) + η[rt + γmax
a

Qt(st+1, a)] (20)

where η and γ are the step size and discount rate, respectively.
In equation (20), the reward rt is acquired from r := S ×
A → R, where E{rt|(s, a, s

′
) = (st, at, st+1)} = Rs

′

s,a. From
iterative updating of the equation, the optimal value function
can be acquired as follows

Q∗(s, a) = Es′ [R+ γmax
a′

Q∗(s
′
a

′
)|s, a]. (21)

In the DRL based model, we make the assumption that a
single decision maker, acting as an agent, governs both the
IRS and the UAV. The agent receives information on state

Figure 3. SINR levels of the UAV (located at [0, 0, z]T ) to given 15 GUEs

st from the state space S during time slot t, which includes
the positions of the UAV and all GUEs, and the IRS phase
steer. The agent acquires the current state and make choice
according to the decision policy Π, then selects one action at
from a set of possible action A that includes the direction of
movement for the UAV, PS ratio, transmission power, and IRS
phase steer. Following the agent’s action, it receives a reward
or penalty rt determined by the average EE of the UAV. We
explain the detailed definition of the states, actions, and reward
function in our work, as follows.

1) States: The state space of the proposed DRL model is
defined by

st = {qu[t], ρ[t], p[t],Θ[t],hH
m[t], t} (22)

where qu[t] = [x[t], y[t], h]T is the UAV two-dimensional (2D)
coordinate, ρ[t] ∈ [0, 1] is the PS ratio, p[t] is the transmission
power, Θ[t] ∈ CNrNc×NrNc is the IRS phase steer at time
slot t.

2) Actions: The action space of the proposed DRL model
is designed as

at = {∆qu[t],∆ρ[t],∆p[t],∆Θ[t]}, (23)

where ∆qu[t] ∈ {(−δx, 0), (δx, 0), (0,−δy), (0, δy),
(−δxy, 0), (δxy, 0), (−δyx, 0), (δyx, 0), (0, 0)} means
the moving directions of the UAV, ∆ρ[t] ∈ {0, ..., 1},
∆p[t] ∈ {0, ..., pmax}, ∆Θ[t] ∈ {0, ..., 2π}.

3) Reward: Using the concept of the SINR map, we build
a reward function, which indicates the average EE of the UAV
under given network topology. The reward function is designed
as

r(q̃u, qu, ρm, pm,Θ)[t] =

1

M

M∑︂
m=1

Amfq̃m(q̃u)EEm(qu, ρm, pm,Θ)[t], (24)

where f is the multivariate (bivariate in our work) normal
distribution, q̃m and q̃u denote the projections of qm and qu
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Figure 4. Average SINR values of the UAV over given 15 GUEs

Figure 5. Reward values of the UAV in 3D

over x-y plane, respectively, and Am is the normalization
weight. It is noted that the function f is multiplied by EEm

to obtain a continuous and differentiable reward function
while preserving the characteristics of the SINR distribution
of multi-modal Gaussian distribution. f is given by

fψ⃗(a⃗) =
exp

(︂
− 1

2 (a⃗− ψ⃗)T∆−1(a⃗− ψ⃗)
)︂

√︁
(2π)k|∆|

, (25)

where a⃗ is a column vector, µ⃗ is the mean vector, k is the
dimension of the function, ∆ is the covariance matrix and
|∆| ≡ det ∆ is the determinant of the ∆.

Figs. 5 shows the average EE of the UAV in 3D, under the
same environment in Fig. 4. It is noticeable that the EE in
Fig. 5 is a surface, and the product of EEm and the bivariate
function gives the EE a smoother contour shape as opposed
to the average SINR value in Fig. 4. In addition, the EE of
the UAV is designed in such a way that the highest EE region
provides the highest reward, which induces the UAV to fly
over or hover around this region with high probability.

Consequently, the penalty of the proposed DRL algorithm
is defined as

a
′

t =

{︄
rt satisfies C1, C2, C3, C4,

0 otherwise.
(26)

The objective of the deep neural network (DNN) is to reduce
the value of the loss function, which can be expressed as
follows

L(ϕ) = E[(y −Q(st, at, ϕ))
2], (27)

where y = rt+γmaxa∈A Qprev(st, at, ϕ). During the training
phase of the DNN, the parameter ϕ is updated using a
technique called experience replay. This involves randomly
selecting a minibatch, denoted as D̂, from the experience
replay memory D. The selected minibatch is then utilized
as the input data for updating the parameter ϕ of the neural
network. This approach allows for efficient and effective
utilization of past experiences to improve the training process
of the DNN.

Error gradient is obtained by chain rule, which is given by

∇ϕL ≈ 1

|D̂|

∑︂
2(y −Q(st, at, ϕ))∇ϕQ(st, at, ϕ). (28)

At each iteration, the agent modifies its decision-making
strategy based on the current estimate of the Q-value. The
agent employs an ϵ-greedy policy to choose an action from
the action space. This policy is defined as follows

a
′

t =

{︄
argmaxa∈AQ(st, at, ϕ) with probability 1 − ϵ

random action with probability ϵ.
(29)

IV. RESULTS AND DISCUSSION

Table I
SIMULATION PARAMETERS.

Parameter Value
Coverage area 300m×300m
Number of the GUEs 15
Number of reflecting units {10,20,...,80}
Velocity of the UAV 5m/s
UAV flying height 100m
IRS’s height 30m
transmission power {10,12,14,...,28} [dBm]
Energy transfer efficiency 50%
Path loss exponent (NLoS) 3.6
Path loss exponent (LoS) 2.2
Rician factor 2
Discount factor 0.8

In this section, we evaluate the effectiveness of the proposed
DRL with SINR map-based reward through comprehensive
evaluations of various simulations. For comparison, we select
the Successive Fly-and-Hover (SHF) scheme with random
IRS phase steer, DRL without IRS and REINFORCE. REIN-
FORCE is derived as a Monte-Carlo policy gradient learning
algorithm, which trains the agent to generate a stochastic
policy. Due to the challenge of balancing exploration and
exploitation during training, REINFORCE often converges to
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Figure 6. Average EE vs. the number of reflecting unit
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suboptimal solution. The Table I provides a summary of the
parameters employed in the simulation.

In the following figures, we analyze the performances with
various number of reflecting units. In Fig. 6 the average
EE increases as the number of reflecting unit goes up. We
can clearly see the IRS performance gain of the proposed
algorithm compared to the DRL without IRS method.

Fig. 7 shows the data rate achieved as we increase the
number of reflecting units. It is verified that the proposed
method achieves a higher data rate compared to that of the
SHF with ρ = 1. Although REINFORCE achieves lower
energy consumption than SHF with ρ = 1, its datarate is
also lower than the SHF, which results in lower EE. Fig.
8 depicts the performance considering the average energy
consumption versus the number of reflecting units. From the
result in Fig. 8, we can verify that the proposed algorithm
takes advantage of the reflecting units of the IRS to reduce the
energy consumption. Furthermore, as the number of reflecting
units increases to a certain amount, the performance gradually
goes to convergent state, highlighting the limitation of IRS.
Additionally, the results show that implementing the proposed
DRL with 10 IRS elements performs similarly to the baseline
version without any IRS components. Therefore, it is important
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to employ more than 10 IRS units to reap the advantage of
the IRS.

V. CONCLUSION

In this paper, we analyze an IRS-aided UAV WPT network
with SWIPT, formulating an average energy efficiency max-
imization problem. To tackle this, we use a DRL approach
and propose a reward function based on the EE of GUEs to
jointly optimize the UAV’s flight path, IRS phase steering,
transmission power, and power splitting ratio. Simulation
results highlight the benefits of our algorithm, both with and
without IRS. Future work will explore EE for 3D UAV route
planning in a multi-UAV environment using multi-agent DRL.
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