
Accelerating Contextualization in AI Large
Language Models Using Vector Databases

Raad Bin Tareaf, Mohammed AbuJarour, Tom Engelman, Philipp Liermann, Jesse Klotz
XU Exponential University of Applied Sciences

August-Bebel-Str. 26-53, 14482 Potsdam, Germany
Email: {r.bintareaf, m.abujarour, t.engelman, p.liermann, j.klotz}@xu-university.de

Abstract—In this study, we focus on evaluating the perfor-
mance of machine learning models, specifically, language models,
in interpreting and understanding a subset of Berlin Parliament
textual documents. With the ultimate goal of identifying the most
effective and reliable model, we conduct comparative analyses
involving OpenAI’s gpt-3.5-turbo and our in-house model. The
evaluation framework incorporates Vicuna-13B, a refined model
developed through fine-tuning and specifically designed for
complex performance assessment of chatbots. Despite limitations
tied to the scope of the dataset and hardware constraints, our
results indicate that both models exhibit consistent performance
metrics, suggesting their practical applicability in real-world
settings. Moreover, the study emphasizes the potential of in-
corporating vector databases for contextual data retrieval as a
future avenue for enhancing the efficiency and understanding
of language models. The paper concludes by proposing specific
optimization pathways for future work, particularly in terms of
software parameter tuning and model fine-tuning, to elevate the
capabilities of existing models.
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I. INTRODUCTION

In recent years, Generative Artificial Intelligence models,
particularly Large Language Models (LLMs), have made sig-
nificant strides in capabilities [1]. These state-of-the-art mod-
els are generally trained on voluminous collections of textual
and code-based data [2]. Their broad range of applications
includes natural language generation, machine translation,
creative content authoring, and provision of knowledge-based
responses [3]–[7].

Nevertheless, these models present challenges in scalability
and efficiency [8]. They are computationally expensive to
train and have an insatiable appetite for extensive data sets.
Consequently, adding custom data to further contextualize
or specialize these models often becomes a daunting task,
limiting their applicability in specialized domains.

Vector databases, designed for the efficient storage and
querying of high-dimensional vector data, offer a compelling
solution to this limitation [9]. These databases can effectively
manage the embedding vectors, which encapsulate semantic

and syntactic information of textual data [10]. Such an ap-
proach streamlines the process of finding ’nearest neighbors’
for a given vector— a pivotal step in data embedding.

In this study, we introduce an approach to augment existing
LLMs with custom data sets, leveraging the efficiency of
vector databases. Our empirical evaluations demonstrate that
our approach not only expedites the embedding process but
also enhances the contextual relevance of the LLM across
multiple tasks without the need for retraining the original
model.

Section II provides an overview of the historical devel-
opments in the field of large language models and vector
databases. In Section III, we discuss the data used for
contextualizing a pre-trained model, along with the hardware
configurations and architecture of our pipeline. Section IV
delves into the experimental results, comparing the perfor-
mances of various models. Finally, Section V concludes the
study, offering directions for future research and suggesting
potential areas for expansion.

II. LITERATURE REVIEW

Large Language Models (LLMs) represent a specialized
subset of Artificial Intelligence (AI) technologies, trained
on extensive corpora of text and programming code [11]
[12]. These advanced models have the capability to produce
text that closely mimics human language, perform language
translation, generate a range of creative content, and provide
informative responses to queries. Demonstrating proficiency
in numerous tasks that were once considered solely within
human expertise, LLMs are undergoing rapid advancements
in sophistication [8] [13].

The roots of LLMs can be traced to the formative years of
AI. As early as the 1950s, researchers initiated the develop-
ment of statistical language models, laying the foundational
blocks for machine translation by successfully translating a
small corpus of 60 Russian sentences into English [14]. Al-
though rudimentary, these early models displayed promising
results.
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The 1980s witnessed a transition towards neural network-
based language models, which exhibited higher complexity
and efficacy compared to their statistical predecessors [15]
[16]. Such models excelled in predicting the likelihood of
word sequences, thereby elevating the performance metrics
of language models.

The 2010s marked a watershed moment for the develop-
ment of LLMs, spurred by the advent of voluminous datasets
comprising text and code. The sheer scale and complexity of
these datasets enabled the training of increasingly intricate
LLMs. A pivotal moment for public accessibility to LLM
technology occurred with the release of OpenAI’s Generative
Pre-trained Transformer (GPT) series, commencing with GPT
in 2018, followed by the more advanced GPT-2 in 2019, and
culminating in the release of GPT-3 in 2020 [13].

In the realm of database technologies tailored for machine
learning applications, vector databases occupy a unique niche.
Specifically engineered for the storage and querying of high-
dimensional vectors, these databases are gaining traction
in the academic and industrial communities alike. High-
dimensional vectors encapsulate a broad range of data modal-
ities, encompassing text, images, and auditory signals, among
others [17]. The cornerstone technology in the area of vector
databases is FAISS, an indexing and search system that was
open-sourced by Facebook in 2017 [18].

Vector databases employ a myriad of sophisticated indexing
and search algorithms designed for high-dimensionality [9]
[10]. These algorithmic approaches facilitate the efficient and
precise retrieval of data, thereby solving one of the major
challenges associated with the high-dimensional data spaces
generated by various machine learning models, including
Large Language Models (LLMs) [19]. Given their capability
to handle enormous volumes of complex data while maintain-
ing query efficiency, vector databases are finding increased
adoption for a plethora of applications, such as document
retrieval, recommendation systems, and even aiding in the
training regimes of generative models like LLMs.

Their surge in popularity can be attributed to their prowess
in managing the high dimensionality that characterizes many
forms of contemporary data. Moreover, their performance
in returning accurate and fast search results has proven to
be advantageous for several machine learning and natural
language processing tasks [21] [40] [41] [22]. Thus, the
potential for integrating vector databases with existing LLMs
to expedite tasks such as similarity search or contextual data
retrieval is an emerging avenue that beckons further scholarly
exploration.

III. METHODOLOGY & IMPLEMENTATION

Incorporating custom, context-relevant data into Large
Language Models (LLMs) enhances their performance and
specificity for specialized tasks [23]–[25]. Vector databases
serve as an efficient medium for this process, offering scalable
storage and rapid query of high-dimensional data vectors [17].
Their use not only speeds up the embedding process but also
improves the model’s accuracy [20], making the integration
of vector databases a promising avenue in advancing LLM
capabilities.

We present our comprehensive methodology, including the
types of data we have chosen to embed into the LLM, the
hardware configurations employed, the architecture of the
pipeline we have constructed, and the final model that was
ultimately utilized

A. Data

The primary data corpus for this study was obtained from
the PARDOK database [26], an expansive digital archive
housing a range of documents affiliated with the Berlin Par-
liament. These documents encompass parliamentary inquiries,
legislative initiatives, committee reports, and transcripts of
plenary sessions. For the purposes of this investigation, we
specifically focused on parliamentary inquiries. The dataset
culled from PARDOK consisted of approximately 6,000 doc-
uments, all of which were scraped from the PARDOK website
and subsequently stored in a dedicated file system folder.

B. Hardware Configuration

- System Specifications:
The computational backbone of the prototype operates on

consumer-grade hardware components. The server executing
the prototype boasts an Intel Core i5-13400f processor, an
RTX 3090 graphics card with 24 GB of memory, 64 GB
DDR4 RAM, and a storage capacity of 2 TB provided by an
NVME SSD.

- VRAM Utilization:
The VRAM consumption is allocated across various compo-
nents of the pipeline. Specifically, the Text Inference Model
utilizes 15334 MiB of VRAM, while the Embeddings Model
uses 3232 MiB.

C. Pipeline Architecture

In response to the limitations inherent in existing Large
Language Models (LLMs) with respect to input size and con-
text management, we have architected a specialized pipeline
designed for handling voluminous textual data. Conventional
LLMs like ChatGPT are constrained by a maximum token
limit—approximately 16,000 tokens [27] in current public
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versions—restricting their ability to manage expansive con-
texts or documents.

A prevalent workaround entails passing summarized docu-
ments as the model’s context. However, this approach com-
promises the granularity of the information, which may be
essential for resolving specific queries. Moreover, summariza-
tion does not efficiently utilize the available context size and
still faces token limitations.

Our pipeline adopts a distinct approach that leverages a
vector database to identify and select salient information
pertaining to a query or statement. This method enables
the retrieval of pertinent data from a virtually limitless pool
of documents. Upon initialization, the pipeline ingests PDF
documents and subsequently responds to queries concerning
these documents by querying the vector database to identify
relevant context. This mechanism not only alleviates the token
constraints but also facilitates a more accurate and expansive
contextual understanding for the LLM.

This methodology offers a scalable solution for managing
extensive datasets and ensures that pertinent details are not
lost, thereby providing a more comprehensive and nuanced
response to queries.

1) Text Splitter Implementation
For the efficient population of our vector database, the

raw PDF documents need to be transformed into a tex-
tual format. This transformation is accomplished through
the PyPDFLoader function [28], a feature available in the
Langchain library. The function is configured to convert an
entire folder of PDFs into segmented lists of paragraphs.

In our specific implementation, each document is divided
into blocks of text, each comprising approximately 500 words
with a 20-word overlap as shown in Table I. This design de-
cision was made after meticulous consideration. We observed
that too short a text block could lead to loss of contextual
information, especially if a sentence is broken between blocks
or if subsequent sentences refer to earlier content in the block.
Conversely, making the text blocks excessively large risks
compromising the quality of the generated embeddings, as
we found during preliminary experiments.

TABLE I: Statistics of Text Transformation and Vector
Database Population

Characteristic Description
Text Block Size Approximately 500 words
Overlap Words 20 words

Text Source PDF Documents
Transformation Function PyPDFLoader

Library Used Langchain
Trade-off Considerations Context vs. Embedding Quality

Database Population Efficiency High

After a series of basic tests, it was empirically determined
that a block size of around 500 words offers the most balanced
trade-off between maintaining context and ensuring effective
embeddings. This approach allows us to efficiently populate
the vector database without sacrificing the quality or integrity
of the information being processed.

2) Embeddings

For the embedding phase of our pipeline, we employed an
SBERT (Sentence-BERT) model, as introduced by Reimers
& Gurevych [29]. Specifically, we utilized the All-Roberta-
Large-v1 model accessible through Hugging Face’s repository
[30]. The model is designed to handle an input sequence
length of up to 514 tokens and returns a feature vector with
1024 dimensions. Although there are other long-former mod-
els capable of processing larger token sequences, exceeding
4096 tokens, we chose the aforementioned model for its
balanced capabilities. This choice was particularly influenced
by the absence of GPU support in our vector database for
similarity searching, which raised concerns about the compu-
tational efficiency of higher-dimensional embeddings when
operated on a CPU. Preliminary testing validated the efficacy
of the 1024-dimensional vectors for similarity searches, which
were subsequently stored in the vector database for future
querying.

3) Vector Database Configuration

For our study, we used Milvus as our vector database
due to its comprehensive documentation and its robustness
as an open-source platform. The vector database schema
includes fields such as ID, embeddings, sentences, timestamp,
category, active status, vector name, author ID, language,
source, and creation timestamp, with specific data types and
details tailored for each field.

a. Dimensionality: The dimensionality of the embeddings
in the vector database is set to 1024. This is to ensure
compatibility with the output dimensions generated by
our selected SBERT model.

b. Indexing Method: We employed the IVF FLAT index-
ing algorithm to optimize query time. The IVF FLAT
(Inverted File with Flat Structure) algorithm is gen-
erally used as part of approximate nearest neighbor
search in high-dimensional spaces. The technique is
often associated with large-scale information retrieval
and has been widely discussed in the literature related to
computer vision, machine learning, and databases [32].
This technique partitions the dataset into smaller clusters
and calculates distances between cluster centroids and
input vectors, thereby reducing computational overhead
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during queries as mathmaticall shown below:

ci = argmin
c

∑
x∈Ci

∥x− c∥2 (1)

d(x, q) = ∥x− q∥2 =

√√√√ D∑
i=1

(xi − qi)2 (2)

(1) represent the clustering step mathematically, typically
achieved using k-means. During the search step, the
distance between a query vector q and the vectors in the
closest cluster Ci is often calculated using the distance
(2) where D is the dimensionality of the vectors.

c. Metric Type: For the distance metric, we used the L2
norm, commonly known as the Euclidean distance [31].
This is mathematically expressed as below.

d(A,B) =

√√√√
n∑

i=1

(ai − bi)2 (3)

Leveraging this metric and the IVF FLAT indexing
method, Milvus efficiently ranks the top n vectors that
are most relevant to the input vector.

d. Query Execution: Upon receiving an input vector, the
database performs a similarity search, yielding a list of
top-ranking paragraphs from all the documents stored.

4) Algorithmic Overview for Configuration and Query
Execution

Algorithm 1 Vector Database Configuration and Query
Execution

1: Input: Input Vector Q, Number of Top Matches to Retrieve n
2: Initialize Milvus Vector Database:
3: Set Dimensionality to 1024
4: Set Indexing Method to IVF FLAT
5: Set Metric Type to L2
6: function EMBEDPARAGRAPHSINTOVECTORS
7: Embed paragraphs using SBERT
8: Store vectors in Milvus Database
9: end function

10: function PERFORMQUERY(Q,n)
11: Partition vectors into clusters ▷ k-means for centroids
12: for each cluster Ci do
13: ci = argminc

∑
x∈Ci

∥x− c∥2
14: end for
15: Find closest cluster to Q ▷ Use L2 norm
16: Cmin = cluster closest to Q
17: Search Cmin for top n vectors ▷ Use L2 norm
18: Sort vectors based on distance
19: Retrieve top n closest vectors
20: Output corresponding paragraphs
21: end function
22: Execute PERFORMQUERY(Q,n)

5) Model Configuration
We employed a Falcon-based fine-tuning approach for our

language model, specifically the OpenAssistant/falcon-7b-sft-
mix-2000 model [33] [34]. This model has been fine-tuned for
the German language and is tailored for instructional tasks.
Despite its capacity for additional fine-tuning, we chose not
to further optimize it for our specific use case. We reason that
extensive fine-tuning may not significantly impact the quality
of generated summaries and answers, as the primary role of
the model in our system is to effectively summarize and recall
paragraphs in response to queries.

a) Choice of Model
Before the release of Lama2 [35], Falcon models were

among the few commercially licensed solutions available.
Although the 40b Falcon model topped the Huggingface LLM
leaderboard, we opted for the 7b version due to hardware
limitations—specifically, the 40b model could not be accom-
modated by our available GPU resources.

b) Prompt Structure
Upon retrieving the top-n most relevant paragraphs from

our vector database, we construct a prompt to pass to the
model as follows:

<|prompter|>
Use the following information as context:
{context}
to answer the following question:
{question}
Answer:<|endoftext|><|assistant|>

This specific token structure is crucial, as the model has been
fine-tuned using similar tokens.

c) Deployment
For deployment, we utilized Huggingface’s text-generation-

inference (TGI) [36], which provided us with a high-
performance, scalable, and cost-effective platform for serving
large language models. TGI also offers valuable features
like quantization and continuous batching, which will be
particularly beneficial when scaling to larger models, such
as LAMA2-70b, that require workload parallelization.

IV. RESULTS

For our experiment, we initially created 75 questions using
an AI model (OpenAI gpt-3.5-model) from 7 sample PDF
documents. These questions were posed to our custom model
equipped with a Vector Database, as well as to the OpenAI
gpt-3.5-model. We recorded these results for analysis. Further,
we also had these answers evaluated and scored by the
OpenAI gpt-3.5-model, the details of which were saved for
final comparison.

The generated dataset contains 75 records comprising ques-
tions and answers related to parliamentary inquiries. Each
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record includes the following columns: Question, Answer,
Status Code, and Response Time. The benchmark dataset can
be accessed via the link at the bottom of this page1. The
questions were generated using a tool called Humata2, which
employs the OpenAI’s gpt-3.5-turbo model and indexes text
chunks into a vector database provided by Supabase3.

Our dataset consists of 72 questions and 71 answers, with
some repetitions noted. Assessing the quality and relevance
of these answers requires a nuanced approach, potentially
involving more sophisticated linguistic analysis. Every query
in our study returned a successful status code of 200, with
response times between approximately 0.132 and 0.209 sec-
onds.

In comparing our model to alternatives, we sought a
counterpart to OpenAI’s models that could be locally hosted
and meet commercial licensing conditions. Our evaluations
involved generating and analyzing responses from our model
for both accuracy and diversity, using OpenAI’s GPT-3.5
Turbo model as a benchmark.

The unique challenges of chatbot performance, such as lin-
guistic comprehension and context relevance, were addressed
using Vicuna-13B [38]. Preliminary insights from Vicuna-
13B, which aligns closely in quality with leading models like
OpenAI ChatGPT, prompted further consideration of models
like GPT-4 as potential evaluation tools [37], [39].

Our findings alongside responses from our model (A1)
and OpenAI’s GPT-3.5 Turbo (A2) to our questions, with
73 distinct reasoning explanations documented. Initial data
suggests GPT-3.5 Turbo has an edge over A1, as depicted in
Figure 1 and reflected in quality scores. Yet, A1 demonstrated
faster inference times. While these initial results are based
on Vicuna-13B’s evaluations, they highlight the need for
a deeper, comprehensive analysis. Both models, however,
exhibited consistent performance metrics.

V. CONCLUSION

The consistent performance of both models further empha-
sizes the untapped potential of leveraging vector databases
in enhancing language models like LLMs. Vector databases
could offer a more structured and efficient way to manage
and query the high-dimensional data, thereby potentially im-
proving the models’ understanding and processing speed. This
opens new avenues for optimizing and scaling up language
models for specific tasks that require rapid and accurate text
analysis and interpretation.

Future work can take several directions. Data expansion
to include a more diverse set of documents, incorporating

1https://github.com/fipso/ml-itdz/blob/main/benchmarks/Benchmark.csv
2Humata - ChatGPT for all your files. (o. D.). https://www.humata.ai/
3Supabase - Open Source Firebase alternative. https://supabase.com/

Fig. 1: Distribution of Quality Scores for Both AI Models

graphical elements in the analysis, and upgrading the hard-
ware resources are immediate considerations.
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